24,516 research outputs found

    Adversarial Domain Adaptation for Duplicate Question Detection

    Full text link
    We address the problem of detecting duplicate questions in forums, which is an important step towards automating the process of answering new questions. As finding and annotating such potential duplicates manually is very tedious and costly, automatic methods based on machine learning are a viable alternative. However, many forums do not have annotated data, i.e., questions labeled by experts as duplicates, and thus a promising solution is to use domain adaptation from another forum that has such annotations. Here we focus on adversarial domain adaptation, deriving important findings about when it performs well and what properties of the domains are important in this regard. Our experiments with StackExchange data show an average improvement of 5.6% over the best baseline across multiple pairs of domains.Comment: EMNLP 2018 short paper - camera ready. 8 page

    Improving Retrieval-Based Question Answering with Deep Inference Models

    Full text link
    Question answering is one of the most important and difficult applications at the border of information retrieval and natural language processing, especially when we talk about complex science questions which require some form of inference to determine the correct answer. In this paper, we present a two-step method that combines information retrieval techniques optimized for question answering with deep learning models for natural language inference in order to tackle the multi-choice question answering in the science domain. For each question-answer pair, we use standard retrieval-based models to find relevant candidate contexts and decompose the main problem into two different sub-problems. First, assign correctness scores for each candidate answer based on the context using retrieval models from Lucene. Second, we use deep learning architectures to compute if a candidate answer can be inferred from some well-chosen context consisting of sentences retrieved from the knowledge base. In the end, all these solvers are combined using a simple neural network to predict the correct answer. This proposed two-step model outperforms the best retrieval-based solver by over 3% in absolute accuracy.Comment: 8 pages, 2 figures, 8 tables, accepted at IJCNN 201

    Hashing based Answer Selection

    Full text link
    Answer selection is an important subtask of question answering (QA), where deep models usually achieve better performance. Most deep models adopt question-answer interaction mechanisms, such as attention, to get vector representations for answers. When these interaction based deep models are deployed for online prediction, the representations of all answers need to be recalculated for each question. This procedure is time-consuming for deep models with complex encoders like BERT which usually have better accuracy than simple encoders. One possible solution is to store the matrix representation (encoder output) of each answer in memory to avoid recalculation. But this will bring large memory cost. In this paper, we propose a novel method, called hashing based answer selection (HAS), to tackle this problem. HAS adopts a hashing strategy to learn a binary matrix representation for each answer, which can dramatically reduce the memory cost for storing the matrix representations of answers. Hence, HAS can adopt complex encoders like BERT in the model, but the online prediction of HAS is still fast with a low memory cost. Experimental results on three popular answer selection datasets show that HAS can outperform existing models to achieve state-of-the-art performance

    Supervised and Unsupervised Transfer Learning for Question Answering

    Full text link
    Although transfer learning has been shown to be successful for tasks like object and speech recognition, its applicability to question answering (QA) has yet to be well-studied. In this paper, we conduct extensive experiments to investigate the transferability of knowledge learned from a source QA dataset to a target dataset using two QA models. The performance of both models on a TOEFL listening comprehension test (Tseng et al., 2016) and MCTest (Richardson et al., 2013) is significantly improved via a simple transfer learning technique from MovieQA (Tapaswi et al., 2016). In particular, one of the models achieves the state-of-the-art on all target datasets; for the TOEFL listening comprehension test, it outperforms the previous best model by 7%. Finally, we show that transfer learning is helpful even in unsupervised scenarios when correct answers for target QA dataset examples are not available.Comment: To appear in NAACL HLT 2018 (long paper
    • …
    corecore