39 research outputs found

    Haptics Rendering and Applications

    Get PDF
    There has been significant progress in haptic technologies but the incorporation of haptics into virtual environments is still in its infancy. A wide range of the new society's human activities including communication, education, art, entertainment, commerce and science would forever change if we learned how to capture, manipulate and reproduce haptic sensory stimuli that are nearly indistinguishable from reality. For the field to move forward, many commercial and technological barriers need to be overcome. By rendering how objects feel through haptic technology, we communicate information that might reflect a desire to speak a physically- based language that has never been explored before. Due to constant improvement in haptics technology and increasing levels of research into and development of haptics-related algorithms, protocols and devices, there is a belief that haptics technology has a promising future

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Doctor of Philosophy

    Get PDF
    dissertationWhen interacting with objects, humans utilize their sense of touch to provide information about the object and surroundings. However, in video games, virtual reality, and training exercises, humans do not always have information available through the sense of touch. Several types of haptic feedback devices have been created to provide touch information in these scenarios. This dissertation describes the use of tactile skin stretch feedback to provide cues that convey direction information to a user. The direction cues can be used to guide a user or provide information about the environment. The tactile skin stretch feedback devices described herein provide feedback directly to the hands, just as in many real life interactions involving the sense of touch. The devices utilize a moving tactor (actuated skin contact surface, also called a contactor) and surrounding material to give the user a sense of the relative motion. Several game controller prototypes with skin stretch feedback embedded into the device to interface with the fingers were constructed. Experiments were conducted to evaluate user performance in moving the joysticks to match the direction of the stimulus. These experiments investigated stimulus masking effects with both skin stretch feedback and vibrotactile feedback. A controller with feedback on the thumb joysticks was found to have higher user accuracy. Next, precision grip and power grip skin stretch feedback devices were created to investigate cues to convey motion in a three-dimensional space. Experiments were conducted to compare the two devices and to explore user accuracy in identifying different direction cue types. The precision grip device was found to be superior in communicating direction cues to users in four degrees of freedom. Finally, closed-loop control was implemented to guide users to a specific location and orientation within a three-dimensional space. Experiments were conducted to improve controller feedback which in turn improved user performance. Experiments were also conducted to investigate the feasibility of providing multiple cues in succession, in order to guide a user with multiple motions of the hand. It was found that users can successfully reach multiple target locations and orientations in succession

    Ubiquitous haptic feedback in human-computer interaction through electrical muscle stimulation

    Get PDF
    [no abstract

    Haptic Feedback in Virtual Reality: An Investigation Into The Next Step of First Person Perspective Presence

    Get PDF
    Video games are becoming progressively sophisticated with new interesting mechanics and increasingly realistic graphics. Game technologies manufacturers are constantly striving to find innovative ways of providing additional layers of interactivity, and engagement with the player. In video games haptic feedback has traditionally been delivered by motors and pulleys through interfaces such as steering wheels and joysticks, or via a simple vibration mechanism in the controllers. However, while the growing popularity of commercial virtual reality technologies has provided video game developers with a new modality to introduce greater levels of immersion and presence into games, haptic technology in gaming has kept to its traditional roots. In this thesis we investigate the impact that haptic feedback has on player presence within virtual reality environments. We introduce a non-intrusive haptic interface that can be used alongside consumer grade virtual reality technology. This thesis will demonstrate the implementation and technical considerations made during the construction of this device. We then demonstrate the systems effectiveness through a user study evaluating users reactions towards the system when compared with traditional vibration-based haptics and with the absence of any feedback, in a virtual reality game environment. The results from this study show a positive impact on player presence when using the non-intrusive haptic device, with broken down presence scores suggesting the device was successful in delivering a satisfying haptic experience. Results also indicate an improvement in the way participants perceive their own performance when using the device, with presence scores suggesting this is due to participants being able to fully place themselves in the experience

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Design and realization of a master-slave system for reconstructive microsurgery

    Get PDF
    corecore