99,137 research outputs found

    IMPLEMENTASI METODESIMPLE MULTI-ATTRIBUTE RATING TECHNIQUE EXPLOITING RANK (SMARTER) PADA SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN LOKASI PERUMAHAN

    Get PDF
    Abstract-Development of a Decision Support System (DSS) isexpected to help the decision maker to determine the best location ofseveral alternative locations proposed in assisting decision makersbased on criteria - criteria that have been determined. SMARTERmethod (Simple Multi-Attribute Rating Technique Exploiting Ranks)is a modification of the method of SMART (Simple Multi-AttributeRating Technique). This method is modified in terms of weightingthe criteria used to determine the weight of each criterion that isbased on the calculation of Rank Order Centroid (ROC). SMARTERmethod with ROC technique has advantages during the initialweighting of the criteria, weights were calculated using ROCtechnique so that the distance between the criteria of consistency canbe maintained. In the case of this housing site selection criteriaconsist of six criteria: geology / topography, land, accessibility,population, infrastructure, each of these criteria are broken down intosub criteria. Then each - each criteria and sub-criteria are weightedusing ROC technique, then ratings. The highest ratingsvalue on asolution that will be selected as the best alternative to the locationselection house.Keywords-Decision Support System, Rank Order Centroid, Smarter,rule-based reasoning and location selection house.Intisari—Pengembangan sebuah Sistem Pendukung Keputusan(SPK) diharapkan dapat membantu pembuat keputusan untukmenentukan lokasi terbaik dari beberapa alternatif lokasi yangdiusulkan dalam membantu pembuat keputusan berdasarkan kriteria– kriteria yang telah ditentukan. Metode SMARTER (Simple Multi-Attribute Rating Technique Exploiting Ranks) merupakan modifikasidari metode SMART (Simple Multi-Attribute RatingTechnique).Metode ini dimodifikasi dalam hal pembobotan kriteriayang digunakan untuk menentukan bobot dari setiap kriteria yangadaberdasarkan perhitungan Rank Order Centroid (ROC). MetodeSMARTER dengan teknik ROC ini memiliki kelebihan pada saatmelakukan proses pembobotan kriteria, bobot dihitung denganmenggunakan teknik ROC sehingga konsistensi jarak antar kriteriadapat dijaga. Pada kasus pemilihan lokasi perumahan ini kriterianyaterdiri dari 6 kriteria yaitu : geologi/topografi, lahan, aksesibilitas,kependudukan, sarana dan prasarana, yang masing-masing kriteriatersebut dipecah lagi menjadi sub kriteria. Kemudian masing –masing kriteria dan sub kriteria tersebut dilakukan pembobotanmenggunakan teknik ROC, lalu direngkingkan. Nilai yang tertinggipada perengkingan merupakan solusi yang akan dipilih sebagaialternatif terbaik pada pemilihan lokasi rumahKata Kunci— sistem pendukung keputusan, ROC, Smarter, lokasiperumahan

    Combination of symmetry point of criterion, compromise ranking of alternatives from distance to ideal solution and collaborative unbiased rank list integration methods for woodworking machinery selection for small business in Vietnam

    Get PDF
    Woodworking industry plays an important role in the development of Vietnam’s economy. The efficiency of woodworking process depends a lot on the machinery used in the woodworking process. Selecting the best option among a variety of machines is tedious and complex work. However, if the choice of machine is based only on the subjective opinion of the customer, it will lead to mistakes. That mistake is understood that the customer will choose the option that is not the best among the machines proposed by the supplier. Instead, machine selection must be based on all machine parameters. This is called multi-criteria decision making (MCDM). There are MCDM methods, when used it is necessary to know the weights of the criteria. However, there are also methods that do not need to know the weights of the criteria. CRADIS (Compromise Ranking of Alternatives from Distance to Ideal Solution) is a method that, when used, is required to weight the criteria. In contrast, this problem is unnecessary when using the CURLI (Collaborative Unbiased Rank List Integration) method. In this study, three kinds of machinery commonly used for small business in woodworking field were selected. The three kinds of machinery mentioned in this study include wood milling machine, wood saw machine, wood planer. The SPC (Symmetry Point of Criterion) method was used to calculate the weights of the criteria for each kind of machinery. This is the youngest method among the methods of determining the weights for the criteria, it was only found in 2023. The two methods include CRADIS and CURLI were used to rank the machinery kinds. The result showed that in all the surveyed situation, the best alternative is always determined consistently when using CRADIS and CURLI methods. Accordingly, three best alternatives with three different machinery kinds (milling machine, saw machine and planer) were found in this stud

    TOPSIS-RTCID for range target-based criteria and interval data

    Full text link
    [EN] The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is receiving considerable attention as an essential decision analysis technique and becoming a leading method. This paper describes a new version of TOPSIS with interval data and capability to deal with all types of criteria. An improved structure of the TOPSIS is presented to deal with high uncertainty in engineering and engineering decision-making. The proposed Range Target-based Criteria and Interval Data model of TOPSIS (TOPSIS-RTCID) achieves the core contribution in decision making theories through a distinct normalization formula for cost and benefits criteria in scale of point and range target-based values. It is important to notice a very interesting property of the proposed normalization formula being opposite to the usual one. This property can explain why the rank reversal problem is limited. The applicability of the proposed TOPSIS-RTCID method is examined with several empirical litreture’s examples with comparisons, sensitivity analysis, and simulation. The authors have developed a new tool with more efficient, reliable and robust outcomes compared to that from other available tools. The complexity of an engineering design decision problem can be resolved through the development of a well-structured decision making method with multiple attributes. Various decision approches developed for engineering design have neglected elements that should have been taken into account. Through this study, engineering design problems can be resolved with greater reliability and confidence.Jahan, A.; Yazdani, M.; Edwards, K. (2021). TOPSIS-RTCID for range target-based criteria and interval data. International Journal of Production Management and Engineering. 9(1):1-14. https://doi.org/10.4995/ijpme.2021.13323OJS11491Ahn, B.S. (2017). The analytic hierarchy process with interval preference statements. Omega, 67, 177-185. https://doi.org/10.1016/j.omega.2016.05.004Alemi-Ardakani, M., Milani, A.S., Yannacopoulos, S., Shokouhi, G. (2016). On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites. Expert Systems With Applications, 46, 426-438. https://doi.org/10.1016/j.eswa.2015.11.003Amiri, M., Nosratian, N.E., Jamshidi, A., Kazemi, A. (2008). Developing a new ELECTRE method with interval data in multiple attribute decision making problems. Journal of Applied Sciences, 8, 4017-4028. https://doi.org/10.3923/jas.2008.4017.4028Bahraminasab, M., Jahan, A. (2011). Material selection for femoral component of total knee replacement using comprehensive VIKOR. Materials & Design, 32, 4471-4477. https://doi.org/10.1016/j.matdes.2011.03.046Baradaran, V., Azarnia, S. (2013). An Approach to Test Consistency and Generate Weights from Grey Pairwise Matrices in Grey Analytical Hierarchy Process. Journal of Grey System, 25.Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39, 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056Cables, E., Lamata, M.T., Verdegay, J.L. (2018). FRIM-Fuzzy Reference Ideal Method in Multicriteria Decision Making. In Collan, M. & Kacprzyk, J. (Eds.) Soft Computing Applications for Group Decision-making and Consensus Modeling. Cham, Springer International Publishing. https://doi.org/10.1007/978-3-319-60207-3_19Çakır, S. (2016). An integrated approach to machine selection problem using fuzzy SMART-fuzzy weighted axiomatic design. Journal of Intelligent Manufacturing, 1-13. https://doi.org/10.1007/s10845-015-1189-3Celen, A. (2014). Comparative analysis of normalization procedures in TOPSIS method: with an application to Turkish deposit banking market. Informatica, 25, 185-208. https://doi.org/10.15388/Informatica.2014.10Celik, E., Erdogan, M., Gumus, A. (2016). An extended fuzzy TOPSIS-GRA method based on different separation measures for green logistics service provider selection. International Journal of Environmental Science and Technology, 13, 1377-1392. https://doi.org/10.1007/s13762-016-0977-4Dymova, L., Sevastjanov, P., Tikhonenko, A. (2013). A direct interval extension of TOPSIS method. Expert Systems With Applications, 40, 4841-4847. https://doi.org/10.1016/j.eswa.2013.02.022Garca-Cascales, M.S., Lamata, M.T. (2012). On rank reversal and TOPSIS method. Mathematical and Computer Modelling, 56, 123-132. https://doi.org/10.1016/j.mcm.2011.12.022Hafezalkotob, A., Hafezalkotob, A. (2015). Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications. Materials & Design, 87, 949-959. https://doi.org/10.1016/j.matdes.2015.08.087Hafezalkotob, A., Hafezalkotob, A. (2016). Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection. Journal of Industrial Engineering International, 13, 181-198. https://doi.org/10.1007/s40092-016-0176-4Hafezalkotob, A., Hafezalkotob, A. (2017). Interval target-based VIKOR method supported on interval distance and preference degree for machine selection. Engineering Applications of Artificial Intelligence, 57, 184-196. https://doi.org/10.1016/j.engappai.2016.10.018Hafezalkotob, A., Hafezalkotob, A., Sayadi, M.K. (2016). Extension of MULTIMOORA method with interval numbers: An application in materials selection. Applied Mathematical Modelling, 40, 1372-1386. https://doi.org/10.1016/j.apm.2015.07.019Hajiagha, S.H.R., Hashemi, S.S., Zavadskas, E.K., Akrami, H. (2012). Extensions of LINMAP model for multi criteria decision making with grey numbers. Technological and Economic Development of Economy, 18, 636-650. https://doi.org/10.3846/20294913.2012.740518Hazelrigg, G.A. (2003). Validation of engineering design alternative selection methods. Engineering Optimization, 35, 103-120. https://doi.org/10.1080/0305215031000097059Hu, J., Du, Y., Mo, H., Wei, D., Deng, Y. (2016). A modified weighted TOPSIS to identify influential nodes in complex networks. Physica A: Statistical Mechanics and its Applications, 444, 73-85. https://doi.org/10.1016/j.physa.2015.09.028Huang, Y., Jiang, W. (2018). Extension of TOPSIS Method and its Application in Investment. Arabian Journal for Science and Engineering, 43, 693-705. https://doi.org/10.1007/s13369-017-2736-3Jahan, A. (2018). Developing WASPAS-RTB method for range target-based criteria: toward selection for robust design. Technological and Economic Development of Economy, 24, 1362-1387. https://doi.org/10.3846/20294913.2017.1295288Jahan, A., Bahraminasab, M., Edwards, K.L. (2012). A target-based normalization technique for materials selection. Materials & Design, 35, 647-654. https://doi.org/10.1016/j.matdes.2011.09.005Jahan, A., Edwards, K.L. (2013). VIKOR method for material selection problems with interval numbers and target-based criteria. Materials & Design, 47, 759-765. https://doi.org/10.1016/j.matdes.2012.12.072Jahan, A., Edwards, K.L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design. Materials & Design, 65, 335-342. https://doi.org/10.1016/j.matdes.2014.09.022Jahan, A., Edwards, K.L., Bahraminasab, M. (2016). Multi-criteria decision analysis for supporting the selection of engineering materials in product design, Oxford, Butterworth-Heinemann.Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S.M., Bahraminasab, M. (2011). A comprehensive VIKOR method for material selection. Materials & Design, 32, 1215-1221. https://doi.org/10.1016/j.matdes.2010.10.015Jahan, A., Zavadskas, E.K. (2018). ELECTRE-IDAT for design decision-making problems with interval data and target-based criteria. Soft Computing, 23, 129-143. https://doi.org/10.1007/s00500-018-3501-6Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., Davoodi, A.R. (2009). Extension of TOPSIS for decision-making problems with interval data: Interval efficiency. Mathematical and Computer Modelling, 49, 1137-1142. https://doi.org/10.1016/j.mcm.2008.07.009Jahanshahloo, G.R., Lotfi, F.H., Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data. Applied Mathematics and Computation, 175, 1375-1384. https://doi.org/10.1016/j.amc.2005.08.048Kasirian, M., Yusuff, R. (2013). An integration of a hybrid modified TOPSIS with a PGP model for the supplier selection with interdependent criteria. International Journal of Production Research, 51, 1037-1054. https://doi.org/10.1080/00207543.2012.663107Kuo, T. (2017). A modified TOPSIS with a different ranking index. European Journal of Operational Research, 260, 152-160. https://doi.org/10.1016/j.ejor.2016.11.052Liang, D., Xu, Z. (2017). The new extension of TOPSIS method for multiple criteria decision making with hesitant Pythagorean fuzzy sets. Applied Soft Computing, 60, 167-179. https://doi.org/10.1016/j.asoc.2017.06.034Liao, H., Wu, X. (2019). DNMA: A double normalization-based multiple aggregation method for multi-expert multi-criteria decision making. Omega, 94. 102058. https://doi.org/10.1016/j.omega.2019.04.001Liu, H.C., You, J.X., Zhen, L., Fan, X.J. (2014). A novel hybrid multiple criteria decision making model for material selection with targetbased criteria. Materials & Design, 60, 380-390. https://doi.org/10.1016/j.matdes.2014.03.071Maghsoodi, A.I., Maghsoodi, A.I., Poursoltan, P., Antucheviciene, J., Turskis, Z. (2019). Dam construction material selection by implementing the integrated SWARA-CODAS approach with target-based attributes. Archives of Civil and Mechanical Engineering, 19, 1194-1210. https://doi.org/10.1016/j.acme.2019.06.010Milani, A.S., Shanian, A., Madoliat, R., Nemes, J.A. (2005). The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Structural and Multidisciplinary Optimization, 29, 312-318. https://doi.org/10.1007/s00158-004-0473-1Peldschus, F. (2009). The analysis of the quality of the results obtained with the methods of multi-criteria decisions. Technological and Economic Development of Economy, 15, 580-592. https://doi.org/10.3846/1392-8619.2009.15.580-592Peldschus, F. (2018). Recent findings from numerical analysis in multi-criteria decision making. Technological and Economic Development of Economy, 24, 1695-1717. https://doi.org/10.3846/20294913.2017.1356761Perez, E.C., Lamata, M., Verdegay, J. (2016). RIM-Reference Ideal Method in Multicriteria Decision Making. Information Sciences, 337- 338, 1-10. https://doi.org/10.1016/j.ins.2015.12.011Sayadi, M.K., Heydari, M., Shahanaghi, K. (2009). Extension of VIKOR method for decision making problem with interval numbers. Applied Mathematical Modelling, 33, 2257-2262. https://doi.org/10.1016/j.apm.2008.06.002Sen, P., Yang, J.B. (1998). MCDM and the Nature of Decision Making in Design, Springer. https://doi.org/10.1007/978-1-4471-3020-8_2Sevastianov, P. (2007). Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster- Shafer theory. Information Sciences, 177, 4645-4661. https://doi.org/10.1016/j.ins.2007.05.001Shanian, A., Savadogo, O. (2009). A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis. Expert Systems With Applications, 36, 1362-1370. https://doi.org/10.1016/j.eswa.2007.11.052Shen, F., Ma, X., Li, Z., Xu, Z., Cai, D. (2018). An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Information Sciences, 428, 105-119. https://doi.org/10.1016/j.ins.2017.10.045Shishank, S., Dekkers, R. (2013). Outsourcing: decision-making methods and criteria during design and engineering. Production Planning & Control, 24, 318-336. https://doi.org/10.1080/09537287.2011.648544Shouzhen, Z., Yao, X. (2018). A method based on TOPSIS and distance measures for hesitant fuzzy multiple attribute decision making. Technological and Economic Development of Economy, 24, 969-983. https://doi.org/10.3846/20294913.2016.1216472Stanujkic, D., Magdalinovic, N., Jovanovic, R., Stojanovic, S. (2012). An objective multi-criteria approach to optimization using MOORA method and interval grey numbers. Technological and Economic Development of Economy, 18, 331-363. https://doi.org/10.3846/20294913.2012.676996Suder, A., Kahraman, C. (2018). Multiattribute evaluation of organic and inorganic agricultural food investments using fuzzy TOPSIS. Technological and Economic Development of Economy, 24, 844-858. https://doi.org/10.3846/20294913.2016.1216905Tilstra, A.H., Backlund, P.B., Seepersad, C.C., Wood, K.L. (2015). Principles for designing products with flexibility for future evolution. International Journal of Mass Customisation, 5, 22-54. https://doi.org/10.1504/IJMASSC.2015.069597Tsaur, R.C. (2011) Decision risk analysis for an interval TOPSIS method. Applied Mathematics and Computation, 218, 4295-4304. https://doi.org/10.1016/j.amc.2011.10.001Turskis, Z., Zavadskas, E.K. (2010) A novel method for multiple criteria analysis: grey additive ratio assessment (ARAS-G) method. Informatica, 21, 597-610. https://doi.org/10.15388/Informatica.2010.307Wang, Y.M., Luo, Y. (2009) On rank reversal in decision analysis. Mathematical and Computer Modelling, 49, 1221-1229. https://doi.org/10.1016/j.mcm.2008.06.019Ye, J. (2015) An extended TOPSIS method for multiple attribute group decision making based on single valued neutrosophic linguistic numbers. Journal of Intelligent & Fuzzy Systems, 28, 247-255. https://doi.org/10.3233/IFS-141295Yue, Z. (2013) Group decision making with multi-attribute interval data. Information Fusion, 14, 551-561. https://doi.org/10.1016/j.inffus.2013.01.00

    Ordering and Visualisation of Many-objective Populations

    Get PDF
    In many everyday tasks it is necessary to compare the performance of the individuals in a population described by two or more criteria, for example comparing products in order to decide which is the best to purchase in terms of price and quality. Other examples are the comparison of universities, countries, the infrastructure in a telecommunications network, and the candidate solutions to a multi- or many-objective problem. In all of these cases, visualising the individuals better allows a decision maker to interpret their relative performance. This thesis explores methods for understanding and visualising multi- and many-criterion populations. Since people cannot generally comprehend more than three spatial dimensions the visualisation of many-criterion populations is a non-trivial task. We address this by generating visualisations based on the dominance relation which defines a structure in the population and we introduce two novel visualisation methods. The first method explicitly illustrates the dominance relationships between individuals as a graph in which individuals are sorted into Pareto shells, and is enhanced using many-criterion ranking methods to produce a finer ordering of individuals. We extend the power index, a method for ranking according to a single criterion, into the many-criterion domain by defining individual quality in terms of tournaments. The second visualisation method uses a new dominance-based distance in conjunction with multi-dimensional scaling, and we show that dominance can be used to identify an intuitive low-dimensional mapping of individuals, placing similar individuals close together. We demonstrate that this method can visualise a population comprising a large number of criteria. Heatmaps are another common method for presenting high-dimensional data, however they suffer from a drawback of being difficult to interpret if dissimilar individuals are placed close to each other. We apply spectral seriation to produce an ordering of individuals and criteria by which the heatmap is arranged, placing similar individuals and criteria close together. A basic version, computing similarity with the Euclidean distance, is demonstrated, before rank-based alternatives are investigated. The procedure is extended to seriate both the parameter and objective spaces of a multi-objective population in two stages. Since this process describes a trade-off, favouring the ordering of individuals in one space or the other, we demonstrate methods that enhance the visualisation by using an evolutionary optimiser to tune the orderings. One way of revealing the structure of a population is by highlighting which individuals are extreme. To this end, we provide three definitions of the “edge” of a multi-criterion mutually non-dominating population. All three of the definitions are in terms of dominance, and we show that one of them can be extended to cope with many-criterion populations. Because they can be difficult to visualise, it is often difficult for a decision maker to comprehend a population consisting of a large number of criteria. We therefore consider criterion selection methods to reduce the dimensionality with a view to preserving the structure of the population as quantified by its rank order. We investigate the efficacy of greedy, hill-climber and evolutionary algorithms and cast the dimension reduction as a multi-objective problem

    A Grey-Based Fuzzy ELECTRE Model for Project Selection

    Get PDF
    Project selection is considered as an important problem in project management. It is multi-criteria in nature and is based on various quantitative and qualitative factors. The main purpose of this paper is to present a new rank-based method for project selection in outranking relation. According to this approach, decision alternatives were clustered in the concordance matrix and the discordance matrix through the ELECTRE model based on intuitionistic trapezoidal fuzzy numbers. Then, the two matrices were integrated and ranked using grey relational coefficients and the Minkowski space distance. The results of the model were compared with grey relational projection method with intuitionistic trapezoidal fuzzy number. To illustrate the proposed methodology, a case study was conducted to select National Iranian Oil Company projects

    Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method

    Get PDF
    The logistics sector plays one of the most important roles in the supply chain with the aim of providing a fast, flexible, safe, economical, efficient, and environmentally acceptable performance of freight transport flows. In addition, the popularization of the concept of a circular economy (CE) used to retain goods, components, and materials at their highest usability and value at all times, illustrates the importance of the adequate performance of reverse logistics (RL) processes. However, traditional RL is unable to cope with the requirements of modern supply chains and requires the application of Industry 4.0 technologies, which would make it more efficient. The main aim of this study was to evaluate the applicability of various Industry 4.0 technologies in the RL sector in order to point out the most applicable ones. To solve the defined problem, a novel multi-criteria decision making (MCDM) model was defined by combining the best-worst method (BWM) to obtain the criteria weights, and the newly developed comprehensive distance-based ranking (COBRA) method to rank the technologies. Another aim of the study was to validate the newly established method. The results indicated that the most applicable technologies were the Internet of Things, cloud computing, and electronic-mobile marketplaces. These technologies will have a significant impact on the development of RL and the establishment of CE systems, thus bringing about all the related positive effects

    Ranking Alternatives on the Basis of the Intensity of Dominance and Fuzzy Logic within MAUT

    Get PDF
    We introduce dominance measuring methods to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision making problems on the basis of Multi-Attribute Utility Theory (MAUT). We consider the situation where the alternative performances are represented by uniformly distributed intervals, and there exists imprecision concerning the decision-makersÂż preferences, by means of classes of individual utility functions and imprecise weights represented by weight intervals or fuzzy weights, respectively. An additive multi-attribute utility model is used to evaluate the alternatives under consideration, which is considered a valid approach in most practical cases. The approaches we propose are based on the dominance values between pairs of alternatives that can be computed by linear programming, which are then transformed into dominance intensities from which a dominance intensity measure is derived. The methods proposed are compared with other existing dominance measuring methods and other methodologies by Monte Carlo simulation techniques. The performance is analyzed in terms of two measures of efficacy: hit ratio, the proportion of all cases in which the method selects the same best alternative as in the TRUE ranking, and the Rank-order correlation, which represents how similar the overall rank structures of alternatives are in the TRUE ranking and in the ranking derived from the method. The approaches are illustrated with an example consisting on the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides
    • …
    corecore