14,605 research outputs found

    Optimizing hybrid decentralized systems for sustainable urban drainage infrastructures planning

    Get PDF

    Genetic Programming + Unfolding Embryology in Automated Layout Planning

    Get PDF
    Automated layout planning aims to the implementation of computational methods for the generation and the optimization of floor plans, considering the spatial configuration and the assignment of activities. Sophisticated strategies such as Genetic Algorithms have been implemented as heuristics of good solutions. However, the generative forces that derive from the social structures have been often neglected. This research aims to illustrate that the data that encode the layout’s social and cultural generative forces, can be implemented within an evolutionary system for the design of residential layouts. For that purpose a co-operative system was created, which is composed of a Genetic Programming algorithm and an agent-based unfolding embryology procedure that assigns activities to the spaces generated by the GP algorithm. The assignment of activities is a recursive process which follows instructions encoded as permeability graphs. Furthermore, the Ranking Sum Fitness evaluation method is proposed and applied for the achievement of multi-objective optimization. Its efficiency is tested against the Weighted-Sum Fitness function. The system’s results, both numerical and spatial, are compared to the results of a conventional evolutionary approach. This comparison showed that, in general, the proposed system can yield better solutions

    Automated space layout planning for environmental sustainability

    Get PDF
    There is a growing global interest in low/zero carbon buildings in response to the increased CO2 in the atmosphere, nearly half of which comes from building energy consumption. Buildings are built for a considerably longer lifespan and enhancing energy efficiency in buildings can play a significant role in reducing CO2 emissions. Energy efficiency features need to be incorporated at the earliest, as alterations to the design at latter stages may prove to be difficult and sometimes expensive. Building design is concerned with satisfying various objectives (e.g. cost, efficiency of a space layout, energy consumption), which are sometimes in conflict with each other. Performance of various indicators, therefore, needs to be assessed as a whole rather than in isolation. Space layout planning is considered as the starting point of building design. Most performance indicators; i.e. cost, energy efficiency, etc. are closely linked with the layout. Researchers have attempted at automating space layout planning since the 1960s with a view to effectively search the solution space. Diverse approaches are adopted in space layout planning that ranges from the analysis of spatial proximity to the application of ‘space syntax’ theory. Developments in whole building energy simulation and integration of simulation in the design process imply that the search for optimum space layout could be better guided by incorporating detailed-based simulation as response generators as opposed to the ones with a simplified representation of the problem domain. This paper describes a framework for sustainable space layout planning that uses evolutionary computation methods to search the solution space. Whole building simulation programs are used as response generators to guide the search for energy efficient layouts. The integrated approach enables the consideration of energy consumption, in addition to the geometry and topology, for decision making during space layout planning

    Comparison of Lift Path Planning Algorithms for Mobile Crane Operations in Heavy Industrial Projects

    Get PDF
    Heavy industrial projects, especially oil refineries, are constructed by modules prefabricated in factories, transported to sites and installed by mobile cranes. Due to a large number of lifts on the congested and dynamic site layouts in heavy industrial projects, the lift path planning has been attention for not only safe and efficient mobile crane operation but also better project productivity and safety. Although the path planning algorithms have been introduced over the years, they have not been used actively in practice since the comparison of these algorithms has not been examined yet based on the realistic mobility of mobile cranes and real site environment. Therefore, this thesis compares the path planning algorithms including A* search, rapidly exploring random tree (RRT), genetic algorithms (GA) and 3D visualization-based mathematical algorithm (3DVMA) under the same site environment in order to find a competent method using measurement metrics considering collision-free and optimal lift paths with the lower crane operation cost and less computation time. The proposed comparison is implemented in a case study that includes a series of modules lifted by a mobile crane on various site conditions. This comparison shows the advantages and disadvantages of each algorithm for the crane path planning in heavy industrial projects and suggests the direction of further research in this field

    Parametric freeform-based construction site layout optimization

    Get PDF
    Traditional approaches to the construction site layout problem have been focused mainly on rectilinear facilities where the importance proximity measures are mainly based on Cartesian distances between the centroids of the facilities. This is a fair abstraction of the problem; however it ignores the fact that many facilities on construction sites assume non-rectilinear shapes that allow for better compaction within tight sites. The main focus of this research is to develop a new approach of modeling site facilities to surpass limitations and inefficiencies of previous models and to ensure a more realistic approach to construction site layout problems. A construction site layout optimization model was developed that can suit both static and dynamic site layouts. The developed model is capable of modeling any rectilinear and non-rectilinear site shapes, especially splines, since it utilizes a parametric modeling software. The model also has the ability to mimic the “dynamic” behavior of the objects’ shapes through the introduction and development of three different algorithms for dynamic shapes; where the geometrical shapes representing site facilities automatically modify their geometrical forms to fit in strict areas on site. Moreover, the model provides different proximity measures and distance measurement techniques rather than the normal centroidal Cartesian distances used in most models. The new proximity measures take into consideration actual movement between the facilities including any passageways or access roads on site. Furthermore, the concept of selective zoning was introduced and a corresponding algorithm was provided; where the concept significantly enhances optimization efficiency by minimizing the number of solutions through selection of pre-determined movement zones on site. Soft constraints for buffer zones around the site facilities were developed as well. The site layout modeling was formulated on commercial parametric modeling tools (Rhino¼ and Grasshopper¼) and the optimization was performed through genetic algorithms. After each of the algorithms was verified and validated, a case study of a real dynamic site layout planning problem was made to validate the comprehensive model combining all of the modules together. Different proximity measures and distance measurement techniques were considered, along with different static and dynamic geometrical shapes for the temporary facilities. The model produced valid near-optimum solutions, a comparison was then made between the layout that is produced with the model and the layout that would have been produced by other models to demonstrate the capabilities and advantages of the produced model

    Gaps and requirements for applying automatic architectural design to building renovation

    Get PDF
    The renovation of existing buildings provides an opportunity to change the layout to meet the needs of facilities and accomplish sustainability in the built environment at high utilisation rates and low cost. However, building renovation design is complex, and completing architectural design schemes manually needs more efficiency and overall robustness. With the use of computational optimisation, automatic architectural design (AAD) can efficiently assist in building renovation through decision-making based on performance evaluation. This paper comprehensively analyses AAD's current research status and provides a state-of-the-art overview of applying AAD technology to building renovation. Besides, gaps and requirements of using AAD for building renovation are explored from quantitative and qualitative aspects, providing ideas for future research. The research shows that there is still much work to be done to apply AAD to building renovation, including quickly obtaining input data, expanding optimisation topics, selecting design methods, and improving workflow and efficiency

    The Use of Multi-Criteria Evaluation and Network Analysis in the Area Development Planning Process

    Get PDF
    The purpose of this research was to develop improvements to the area development planning process. These plans are used to improve operations within an installation sub-section by altering the physical layout of facilities. One methodology was developed based on apply network analysis concepts to the generation of alternative facility layouts. A second methodology was developed using multi-criteria evaluation to the selection of evaluated alternative facility layouts. The results of this study are two methodological processes that can be executed at base level requiring minimal additional information. The functional network map, based in network analysis, increases the use of socio-economic data into the generation of alterative facility layouts. The alternative layout scoring process, base in multi-criteria evaluation, returns a quantitative score for each alternative layout and a relative ranking. The use of these methodologies as decision support tools reduces the subjectivity of the current process and increases the repeatability of results

    Evolutionary design assistants for architecture

    Get PDF
    In its parallel pursuit of an increased competitivity for design offices and more pleasurable and easier workflows for designers, artificial design intelligence is a technical, intellectual, and political challenge. While human-machine cooperation has become commonplace through Computer Aided Design (CAD) tools, a more improved collaboration and better support appear possible only through an endeavor into a kind of artificial design intelligence, which is more sensitive to the human perception of affairs. Considered as part of the broader Computational Design studies, the research program of this quest can be called Artificial / Autonomous / Automated Design (AD). The current available level of Artificial Intelligence (AI) for design is limited and a viable aim for current AD would be to develop design assistants that are capable of producing drafts for various design tasks. Thus, the overall aim of this thesis is the development of approaches, techniques, and tools towards artificial design assistants that offer a capability for generating drafts for sub-tasks within design processes. The main technology explored for this aim is Evolutionary Computation (EC), and the target design domain is architecture. The two connected research questions of the study concern, first, the investigation of the ways to develop an architectural design assistant, and secondly, the utilization of EC for the development of such assistants. While developing approaches, techniques, and computational tools for such an assistant, the study also carries out a broad theoretical investigation into the main problems, challenges, and requirements towards such assistants on a rather overall level. Therefore, the research is shaped as a parallel investigation of three main threads interwoven along several levels, moving from a more general level to specific applications. The three research threads comprise, first, theoretical discussions and speculations with regard to both existing literature and the proposals and applications of the thesis; secondly, proposals for descriptive and prescriptive models, mappings, summary illustrations, task structures, decomposition schemes, and integratory frameworks; and finally, experimental applications of these proposals. This tripartite progression allows an evaluation of each proposal both conceptually and practically; thereby, enabling a progressive improvement of the understanding regarding the research question, while producing concrete outputs on the way. Besides theoretical and interpretative examinations, the thesis investigates its subject through a set of practical and speculative proposals, which function as both research instruments and the outputs of the study. The first main output of the study is the “design_proxy” approach (d_p), which is an integrated approach for draft making design assistants. It is an outcome of both theoretical examinations and experimental applications, and proposes an integration of, (1) flexible and relaxed task definitions and representations (instead of strict formalisms), (2) intuitive interfaces that make use of usual design media, (3) evaluation of solution proposals through their similarity to given examples, and (4) a dynamic evolutionary approach for solution generation. The design_proxy approach may be useful for AD researchers that aim at developing practical design assistants, as has been examined and demonstrated with the two applications, i.e., design_proxy.graphics and design_proxy.layout. The second main output, the “Interleaved Evolutionary Algorithm” (IEA, or Interleaved EA) is a novel evolutionary algorithm proposed and used as the underlying generative mechanism of design_proxybased design assistants. The Interleaved EA is a dynamic, adaptive, and multi-objective EA, in which one of the objectives leads the evolution until its fitness progression stagnates; in the sense that the settings and fitness values of this objective is used for most evolutionary decisions. In this way, the Interleaved EA enables the use of different settings and operators for each of the objectives within an overall task, which would be the same for all objectives in a regular multi-objective EA. This property gives the algorithm a modular structure, which offers an improvable method for the utilization of domain-specific knowledge for each sub-task, i.e., objective. The Interleaved EA can be used by Evolutionary Computation (EC) researchers and by practitioners who employ EC for their tasks. As a third main output, the “Architectural Stem Cells Framework” is a conceptual framework for architectural design assistants. It proposes a dynamic and multi-layered method for combining a set of design assistants for larger tasks in architectural design. The first component of the framework is a layer-based, parallel task decomposition approach, which aims at obtaining a dynamic parallelization of sub-tasks within a more complicated problem. The second component of the framework is a conception for the development mechanisms for building drafts, i.e., Architectural Stem Cells (ASC). An ASC can be conceived as a semantically marked geometric structure, which contains the information that specifies the possibilities and constraints for how an abstract building may develop from an undetailed stage to a fully developed building draft. ASCs are required for re-integrating the separated task layers of an architectural problem through solution-based development. The ASC Framework brings together many of the ideas of this thesis for a practical research agenda and it is presented to the AD researchers in architecture. Finally, the “design_proxy.layout” (d_p.layout) is an architectural layout design assistant based on the design_proxy approach and the IEA. The system uses a relaxed problem definition (producing draft layouts) and a flexible layout representation that permits the overlapping of design units and boundaries. User interaction with the system is carried out through intuitive 2D graphics and the functional evaluations are performed by measuring the similarity of a proposal to existing layouts. Functioning in an integrated manner, these properties make the system a practicable and enjoying design assistant, which was demonstrated through two workshop cases. The d_p.layout is a versatile and robust layout design assistant that can be used by architects in their design processes
    • 

    corecore