82 research outputs found

    A manifold learning approach to target detection in high-resolution hyperspectral imagery

    Get PDF
    Imagery collected from airborne platforms and satellites provide an important medium for remotely analyzing the content in a scene. In particular, the ability to detect a specific material within a scene is of high importance to both civilian and defense applications. This may include identifying targets such as vehicles, buildings, or boats. Sensors that process hyperspectral images provide the high-dimensional spectral information necessary to perform such analyses. However, for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m \u3c\u3c d. In the remote sensing community, this has led to a recent increase in the use of manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data; this is particularly true when implementing traditional target detection approaches, and the limitations of these models are well-documented. With manifold learning based approaches, the only assumption is that the data reside on an underlying manifold that can be discretely modeled by a graph. The research presented here focuses on the use of graph theory and manifold learning in hyperspectral imagery. Early work explored various graph-building techniques with application to the background model of the Topological Anomaly Detection (TAD) algorithm, which is a graph theory based approach to anomaly detection. This led towards a focus on target detection, and in the development of a specific graph-based model of the data and subsequent dimensionality reduction using manifold learning. An adaptive graph is built on the data, and then used to implement an adaptive version of locally linear embedding (LLE). We artificially induce a target manifold and incorporate it into the adaptive LLE transformation; the artificial target manifold helps to guide the separation of the target data from the background data in the new, lower-dimensional manifold coordinates. Then, target detection is performed in the manifold space

    Leaf recognition for accurate plant classification.

    Get PDF
    Doctor of Philosophy in Computer Science, University of KwaZulu-Natal, Durban 2017.Plants are the most important living organisms on our planet because they are sources of energy and protect our planet against global warming. Botanists were the first scientist to design techniques for plant species recognition using leaves. Although many techniques for plant recognition using leaf images have been proposed in the literature, the precision and the quality of feature descriptors for shape, texture, and color remain the major challenges. This thesis investigates the precision of geometric shape features extraction and improved the determination of the Minimum Bounding Rectangle (MBR). The comparison of the proposed improved MBR determination method to Chaudhuri's method is performed using Mean Absolute Error (MAE) generated by each method on each edge point of the MBR. On the top left point of the determined MBR, Chaudhuri's method has the MAE value of 26.37 and the proposed method has the MAE value of 8.14. This thesis also investigates the use of the Convexity Measure of Polygons for the characterization of the degree of convexity of a given leaf shape. Promising results are obtained when using the Convexity Measure of Polygons combined with other geometric features to characterize leave images, and a classification rate of 92% was obtained with a Multilayer Perceptron Neural Network classifier. After observing the limitations of the Convexity Measure of Polygons, a new shape feature called Convexity Moments of Polygons is presented in this thesis. This new feature has the invariant properties of the Convexity Measure of Polygons, but is more precise because it uses more than one value to characterize the degree of convexity of a given shape. Promising results are obtained when using the Convexity Moments of Polygons combined with other geometric features to characterize the leaf images and a classification rate of 95% was obtained with the Multilayer Perceptron Neural Network classifier. Leaf boundaries carry valuable information that can be used to distinguish between plant species. In this thesis, a new boundary-based shape characterization method called Sinuosity Coefficients is proposed. This method has been used in many fields of science like Geography to describe rivers meandering. The Sinuosity Coefficients is scale and translation invariant. Promising results are obtained when using Sinuosity Coefficients combined with other geometric features to characterize the leaf images, a classification rate of 80% was obtained with the Multilayer Perceptron Neural Network classifier. Finally, this thesis implements a model for plant classification using leaf images, where an input leaf image is described using the Convexity Moments, the Sinuosity Coefficients and the geometric features to generate a feature vector for the recognition of plant species using a Radial Basis Neural Network. With the model designed and implemented the overall classification rate of 97% was obtained

    DEEP NEURAL NETWORKS AND REGRESSION MODELS FOR OBJECT DETECTION AND POSE ESTIMATION

    Get PDF
    Estimating the pose, orientation and the location of objects has been a central problem addressed by the computer vision community for decades. In this dissertation, we propose new approaches for these important problems using deep neural networks as well as tree-based regression models. For the first topic, we look at the human body pose estimation problem and propose a novel regression-based approach. The goal of human body pose estimation is to predict the locations of body joints, given an image of a person. Due to significant variations introduced by pose, clothing and body styles, it is extremely difficult to address this task by a standard application of the regression method. Thus, we address this task by dividing the whole body pose estimation problem into a set of local pose estimation problems by introducing a dependency graph which describes the dependency among different body joints. For each local pose estimation problem, we train a boosted regression tree model and estimate the pose by progressively applying the regression along the paths in a dependency graph starting from the root node. Our next work is on improving the traditional regression tree method and demonstrate its effectiveness for pose/orientation estimation tasks. The main issues of the traditional regression training are, 1) the node splitting is limited to binary splitting, 2) the form of the splitting function is limited to thresholding on a single dimension of the input vector and 3) the best splitting function is found by exhaustive search. We propose a novel node splitting algorithm for regression tree training which does not have the issues mentioned above. The algorithm proceeds by first applying k-means clustering in the output space, conducting multi-class classification by support vector machine (SVM) and determining the constant estimate at each leaf node. We apply the regression forest that includes our regression tree models to head pose estimation, car orientation estimation and pedestrian orientation estimation tasks and demonstrate its superiority over various standard regression methods. Next, we turn our attention to the role of pose information for the object detection task. In particular, we focus on the detection of fashion items a person is wearing or carrying. It is clear that the locations of these items are strongly correlated with the pose of the person. To address this task, we first generate a set of candidate bounding boxes by using an object proposal algorithm. For each candidate bounding box, image features are extracted by a deep convolutional neural network pre-trained on a large image dataset and the detection scores are generated by SVMs. We introduce a pose-dependent prior on the geometry of the bounding boxes and combine it with the SVM scores. We demonstrate that the proposed algorithm achieves significant improvement in the detection performance. Lastly, we address the object detection task by exploring a way to incorporate an attention mechanism into the detection algorithm. Humans have the capability of allocating multiple fixation points, each of which attends to different locations and scales of the scene. However, such a mechanism is missing in the current state-of-the-art object detection methods. Inspired by the human vision system, we propose a novel deep network architecture that imitates this attention mechanism. For detecting objects in an image, the network adaptively places a sequence of glimpses at different locations in the image. Evidences of the presence of an object and its location are extracted from these glimpses, which are then fused for estimating the object class and bounding box coordinates. Due to the lack of ground truth annotations for the visual attention mechanism, we train our network using a reinforcement learning algorithm. Experiment results on standard object detection benchmarks show that the proposed network consistently outperforms the baseline networks that do not employ the attention mechanism

    Visual Perception For Robotic Spatial Understanding

    Get PDF
    Humans understand the world through vision without much effort. We perceive the structure, objects, and people in the environment and pay little direct attention to most of it, until it becomes useful. Intelligent systems, especially mobile robots, have no such biologically engineered vision mechanism to take for granted. In contrast, we must devise algorithmic methods of taking raw sensor data and converting it to something useful very quickly. Vision is such a necessary part of building a robot or any intelligent system that is meant to interact with the world that it is somewhat surprising we don\u27t have off-the-shelf libraries for this capability. Why is this? The simple answer is that the problem is extremely difficult. There has been progress, but the current state of the art is impressive and depressing at the same time. We now have neural networks that can recognize many objects in 2D images, in some cases performing better than a human. Some algorithms can also provide bounding boxes or pixel-level masks to localize the object. We have visual odometry and mapping algorithms that can build reasonably detailed maps over long distances with the right hardware and conditions. On the other hand, we have robots with many sensors and no efficient way to compute their relative extrinsic poses for integrating the data in a single frame. The same networks that produce good object segmentations and labels in a controlled benchmark still miss obvious objects in the real world and have no mechanism for learning on the fly while the robot is exploring. Finally, while we can detect pose for very specific objects, we don\u27t yet have a mechanism that detects pose that generalizes well over categories or that can describe new objects efficiently. We contribute algorithms in four of the areas mentioned above. First, we describe a practical and effective system for calibrating many sensors on a robot with up to 3 different modalities. Second, we present our approach to visual odometry and mapping that exploits the unique capabilities of RGB-D sensors to efficiently build detailed representations of an environment. Third, we describe a 3-D over-segmentation technique that utilizes the models and ego-motion output in the previous step to generate temporally consistent segmentations with camera motion. Finally, we develop a synthesized dataset of chair objects with part labels and investigate the influence of parts on RGB-D based object pose recognition using a novel network architecture we call PartNet

    Asymptotic analysis of semidefinite bounds for polynomial optimization and independent sets in geometric hypergraphs

    Get PDF
    The goal of a mathematical optimization problem is to maximize an objective (or minimize a cost) under a given set of rules, called constraints. Optimization has many applications, both in other areas of mathematics and in the real world. Unfortunately, some of the most interesting problems are also very hard to solve numerically. To work around this issue, one often considers relaxations: approximations of the original problem that are much easier to solve. Naturally, it is then important to understand how (in)accurate these relaxations are. This thesis consists of three parts, each covering a different method that uses semidefinite programming to approximate hard optimization problems. In Part 1 and Part 2, we consider two hierarchies of relaxations for polynomial optimization problems based on sums of squares. We show improved guarantees on the quality of Lasserre's measure-based hierarchy in a wide variety of settings (Part 1). We establish error bounds for the moment-SOS hierarchy in certain fundamental special cases. These bounds are much stronger than the ones obtained from existing, general results (Part 2). In Part 3, we generalize the celebrated Lovász theta number to (geometric) hypergraphs. We apply our generalization to formulate relaxations for a type of independent set problem in the hypersphere. These relaxations allow us to improve some results in Euclidean Ramsey theory

    Data-Driven and Hybrid Methods for Naval Applications

    Get PDF
    The goal of this PhD thesis is to study, design and develop data analysis methods for naval applications. Data analysis is improving our ways to understand complex phenomena by profitably taking advantage of the information laying behind a collection of data. In fact, by adopting algorithms coming from the world of statistics and machine learning it is possible to extract valuable information, without requiring specific domain knowledge of the system generating the data. The application of such methods to marine contexts opens new research scenarios, since typical naval problems can now be solved with higher accuracy rates with respect to more classical techniques, based on the physical equations governing the naval system. During this study, some major naval problems have been addressed adopting state-of-the-art and novel data analysis techniques: condition-based maintenance, consisting in assets monitoring, maintenance planning, and real-time anomaly detection; energy and consumption monitoring, in order to reduce vessel consumption and gas emissions; system safety for maneuvering control and collision avoidance; components design, in order to detect possible defects at design stage. A review of the state-of-the-art of data analysis and machine learning techniques together with the preliminary results of the application of such methods to the aforementioned problems show a growing interest in these research topics and that effective data-driven solutions can be applied to the naval context. Moreover, for some applications, data-driven models have been used in conjunction with domain-dependent methods, modelling physical phenomena, in order to exploit both mechanistic knowledge of the system and available measurements. These hybrid methods are proved to provide more accurate and interpretable results with respect to both the pure physical or data-driven approaches taken singularly, thus showing that in the naval context it is possible to offer new valuable methodologies by either providing novel statistical methods or improving the state-of-the-art ones

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Hadron models and related New Energy issues

    Get PDF
    The present book covers a wide-range of issues from alternative hadron models to their likely implications in New Energy research, including alternative interpretation of lowenergy reaction (coldfusion) phenomena. The authors explored some new approaches to describe novel phenomena in particle physics. M Pitkanen introduces his nuclear string hypothesis derived from his Topological Geometrodynamics theory, while E. Goldfain discusses a number of nonlinear dynamics methods, including bifurcation, pattern formation (complex GinzburgLandau equation) to describe elementary particle masses. Fu Yuhua discusses a plausible method for prediction of phenomena related to New Energy development. F. Smarandache discusses his unmatter hypothesis, and A. Yefremov et al. discuss Yang-Mills field from Quaternion Space Geometry. Diego Rapoport discusses theoretical link between Torsion fields and Hadronic Mechanic. A.H. Phillips discusses semiconductor nanodevices, while V. and A. Boju discuss Digital Discrete and Combinatorial methods and their likely implications in New Energy research. Pavel Pintr et al. describe planetary orbit distance from modified Schrödinger equation, and M. Pereira discusses his new Hypergeometrical description of Standard Model of elementary particles. The present volume will be suitable for researchers interested in New Energy issues, in particular their link with alternative hadron models and interpretation
    • …
    corecore