10,602 research outputs found

    An improved multi-agent simulation methodology for modelling and evaluating wireless communication systems resource allocation algorithms

    Get PDF
    Multi-Agent Systems (MAS) constitute a well known approach in modelling dynamical real world systems. Recently, this technology has been applied to Wireless Communication Systems (WCS), where efficient resource allocation is a primary goal, for modelling the physical entities involved, like Base Stations (BS), service providers and network operators. This paper presents a novel approach in applying MAS methodology to WCS resource allocation by modelling more abstract entities involved in WCS operation, and especially the concurrent network procedures (services). Due to the concurrent nature of a WCS, MAS technology presents a suitable modelling solution. Services such as new call admission, handoff, user movement and call termination are independent to one another and may occur at the same time for many different users in the network. Thus, the required network procedures for supporting the above services act autonomously, interact with the network environment (gather information such as interference conditions), take decisions (e.g. call establishment), etc, and can be modelled as agents. Based on this novel simulation approach, the agent cooperation in terms of negotiation and agreement becomes a critical issue. To this end, two negotiation strategies are presented and evaluated in this research effort and among them the distributed negotiation and communication scheme between network agents is presented to be highly efficient in terms of network performance. The multi-agent concept adapted to the concurrent nature of large scale WCS is, also, discussed in this paper

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201
    • …
    corecore