1,573 research outputs found

    Agent-based simulation of electricity markets: a literature review

    Get PDF
    Liberalisation, climate policy and promotion of renewable energy are challenges to players of the electricity sector in many countries. Policy makers have to consider issues like market power, bounded rationality of players and the appearance of fluctuating energy sources in order to provide adequate legislation. Furthermore the interactions between markets and environmental policy instruments become an issue of increasing importance. A promising approach for the scientific analysis of these developments is the field of agent-based simulation. The goal of this article is to provide an overview of the current work applying this methodology to the analysis of electricity markets. --

    Market Design, Bidding Rules, and Long Memory in Electricity Prices

    Get PDF
    In uniform price, sealed-bid day-ahead electricity auctions, the market price is set at the intersection between aggregate demand and supply functions built by a market operator. Each day, just one agent - the marginal generator - owns the market-clearing plant. Day-ahead auctions are moreover embedded in multi-segment systems, wherein diverse protocols coexist and change over time. Such a complex environment leads to adoption of simple, adaptive bidding rules. Specifically, such a market design lets two different types of routines emerge, depending on whether the agent is a likely marginal or inframarginal generator. However, because of the uniform price mechanism, only the bidding behavior of the former can be reflected into market prices. Depending on the specific way marginal generators process past information to set their bids - 'hyperbolic' or 'exponential' - electricity prices are likely to display long- or short-memory. Experimental evidence on hyperbolic discounting - a quite robust behavioral bias in humans - supports a long-memory view of electricity prices. This insight is broadly confirmed by spectral analysis of daily data from NordPool and CalPX markets, in sharp contrast with most previous empirical studies. This paper underlines the importance of institutional settings in determining market outcomes, and an interesting mapping of bidding rules and models of information processing into the time series properties of market prices.Market Design, Electricity Markets, Hyperbolic Discounting, Long Memory, Fractional Processes

    Are agent-based simulations robust? The wholesale electricity trading case

    Get PDF
    Agent-based computational economics is becoming widely used in practice. This paper explores the consistency of some of its standard techniques. We focus in particular on prevailing wholesale electricity trading simulation methods. We include different supply and demand representations and propose the Experience-Weighted Attractions method to include several behavioural algorithms. We compare the results across assumptions and to economic theory predictions. The match is good under best-response and reinforcement learning but not under fictitious play. The simulations perform well under flat and upward-slopping supply bidding, and also for plausible demand elasticity assumptions. Learning is influenced by the number of bids per plant and the initial conditions. The overall conclusion is that agent-based simulation assumptions are far from innocuous. We link their performance to underlying features, and identify those that are better suited to model wholesale electricity markets.Agent-based computational economics, electricity, market design, experience-weighted attraction (EWA), learning, supply functions, demand aggregation, initial beliefs.

    Agent-based Simulation of Electricity Markets -A Literature Review-

    Full text link

    Agent-Based Computational Economics

    Get PDF
    Agent-based computational economics (ACE) is the computational study of economies modeled as evolving systems of autonomous interacting agents. Starting from initial conditions, specified by the modeler, the computational economy evolves over time as its constituent agents repeatedly interact with each other and learn from these interactions. ACE is therefore a bottom-up culture-dish approach to the study of economic systems. This study discusses the key characteristics and goals of the ACE methodology. Eight currently active research areas are highlighted for concrete illustration. Potential advantages and disadvantages of the ACE methodology are considered, along with open questions and possible directions for future research.Agent-based computational economics; Autonomous agents; Interaction networks; Learning; Evolution; Mechanism design; Computational economics; Object-oriented programming.

    Composition of electricity generation portfolios, pivotal dynamics and market prices

    Get PDF
    We use a simulation model to study how the diversification of electricity generation portfolios influences wholesale prices. We find that technological diversification generally leads to lower market prices but that the relationship is mediated by the supply to demand ratio. In each demand case there is a threshold where pivotal dynamics change. Pivotal dynamics pre- and post-threshold are the cause of non-linearities in the influence of diversification on market prices. The findings are robust to our choice of behavioural parameters and match close-form solutions where those are available.Electricity, market power, simulations, technology diversification

    Systematic categorization of optimization strategies for virtual power plants

    Get PDF
    Due to the rapid growth in power consumption of domestic and industrial appliances, distributed energy generation units face difficulties in supplying power efficiently. The integration of distributed energy resources (DERs) and energy storage systems (ESSs) provides a solution to these problems using appropriate management schemes to achieve optimal operation. Furthermore, to lessen the uncertainties of distributed energy management systems, a decentralized energy management system named virtual power plant (VPP) plays a significant role. This paper presents a comprehensive review of 65 existing different VPP optimization models, techniques, and algorithms based on their system configuration, parameters, and control schemes. Moreover, the paper categorizes the discussed optimization techniques into seven different types, namely conventional technique, offering model, intelligent technique, price-based unit commitment (PBUC) model, optimal bidding, stochastic technique, and linear programming, to underline the commercial and technical efficacy of VPP at day-ahead scheduling at the electricity market. The uncertainties of market prices, load demand, and power distribution in the VPP system are mentioned and analyzed to maximize the system profits with minimum cost. The outcome of the systematic categorization is believed to be a base for future endeavors in the field of VPP development

    Reserve costs allocation model for energy and reserve market simulation

    Get PDF
    This paper proposes a new model to allocate reserve costs among the involved players, considering the characteristics of the several entities, and the particular circumstances at each moment. The proposed model is integrated in the Multi-Agent Simulator of Competitive Electricity Markets (MASCEM), which enables complementing the multi-agent simulation of diverse electricity market models, by including the joint simulation of energy and reserve markets. In this context, the proposed model allows allocating the payment of reserve costs that result from the reserve market. A simulation based on real data from the Iberian electricity market - MIBEL, is presented. Simulation results show the advantages of the proposed model in sharing the reserve costs fairly and accordingly to the different circumstances. This work thus contributes the study of novel market models towards the evolution of power and energy systems by adapting current models to the new paradigm of high penetration of renewable energy generation.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and a grant agreement No 703689 (project ADAPT); and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013info:eu-repo/semantics/publishedVersio
    • 

    corecore