4,806 research outputs found

    GUIDER: a GUI for semiautomatic, physiologically driven EEG feature selection for a rehabilitation BCI

    Get PDF
    GUIDER is a graphical user interface developed in MATLAB software environment to identify electroencephalography (EEG)-based brain computer interface (BCI) control features for a rehabilitation application (i.e. post-stroke motor imagery training). In this context, GUIDER aims to combine physiological and machine learning approaches. Indeed, GUIDER allows therapists to set parameters and constraints according to the rehabilitation principles (e.g. affected hemisphere, sensorimotor relevant frequencies) and foresees an automatic method to select the features among the defined subset. As a proof of concept, we compared offline performances between manual, just based on operator’s expertise and experience, and GUIDER semiautomatic features selection on BCI data collected from stroke patients during BCI-supported motor imagery training. Preliminary results suggest that this semiautomatic approach could be successfully applied to support the human selection reducing operator dependent variability in view of future multi-centric clinical trials

    Gamification in stroke rehabilitation

    Get PDF
    Stroke has a high incidence in the population and it is one of the leading causes of functional impairments among adults. Brain damage rehabilitation is still a relatively undeveloped field and some research lines are following functional motor recovery. Brain-Computer Interface (BCI) provides new techniques to overcome stroke-related motor impairments. Recent studies present the brain’s capacity in order to promote the brain plasticity. The use of the BCI for rehabilitation tries to foster three mechanisms of neuropsychology that have proven to be of radical impact in brain function recovery: Motor Imagery, Mirror Neuron and Sensoriomotor loop. In this project, we present a pilot study with a rehabilitation session based on BCI system combined with gamification. We try to demonstrate that including gamification in the rehabilitation sessions the performance is the same as the base avatar, but the engagement and entertainment of patients increase. In this pilot study is explained the whole design and development of the gamification session as well as the intervention with real patients

    Neurophysiological constraints of control parameters for a brain computer interface system to support post-stroke motor rehabilitation

    Get PDF
    The Promotɶr is an all-in-one Brain Computer Interface (BCI)-system developed at Fondazione Santa Lucia (Rome, Italy) to support hand motor imagery practice after stroke. In this paper we focus on the optimization of control parameters for the BCI training. We compared two procedures for the feature selection: in the first, features were selected by means of a manual procedure (requiring “skilled users”), in the second a semiautomatic method, developed by us combining physiological and machine learning approaches, guided the feature selection. EEG-based BCI data set collected from 13 stroke patients were analyzed to the aim. No differences were found between the two procedures (paired-samples t-test, p=0.13). Results suggest that the semiautomatic procedure could be applied to support the manual feature selection, allowing no-skilled users to approach BCI technology for motor rehabilitation of stroke patients

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Brain computer interface based robotic rehabilitation with online modification of task speed

    Get PDF
    We present a systematic approach that enables online modification/adaptation of robot assisted rehabilitation exercises by continuously monitoring intention levels of patients utilizing an electroencephalogram (EEG) based Brain-Computer Interface (BCI). In particular, we use Linear Discriminant Analysis (LDA) to classify event-related synchronization (ERS) and desynchronization (ERD) patterns associated with motor imagery; however, instead of providing a binary classification output, we utilize posterior probabilities extracted from LDA classifier as the continuous-valued outputs to control a rehabilitation robot. Passive velocity field control (PVFC) is used as the underlying robot controller to map instantaneous levels of motor imagery during the movement to the speed of contour following tasks. In other words, PVFC changes the speed of contour following tasks with respect to intention levels of motor imagery. PVFC also allows decoupling of the task and the speed of the task from each other, and ensures coupled stability of the overall robot patient system. The proposed framework is implemented on AssistOn-Mobile - a series elastic actuator based on a holonomic mobile platform, and feasibility studies with healthy volunteers have been conducted test effectiveness of the proposed approach. Giving patients online control over the speed of the task, the proposed approach ensures active involvement of patients throughout exercise routines and has the potential to increase the efficacy of robot assisted therapies

    The Promotoer: a successful story of translational research in BCI for motor rehabilitation

    Get PDF
    Several groups have recently demonstrated in the context of randomized controlled trials (RCTs) how sensorimotor Brain-Computer Interface (BCI) systems can be beneficial for post-stroke motor recovery. Following a successful RCT, at Fondazione Santa Lucia (FSL) a further translational effort was made with the implementation of the Promotœr, an all in-one BCIsupported MI training station. Up to now, 25 patients underwent training with the Promotɶr during their admission for rehabilitation purposes (in add-on to standard therapy). Two illustrative cases are presented. Though currently limited to FSL, the Promotɶr represents a successful story of translational research in BCI for stroke rehabilitation. Results are promising both in terms of feasibility of a BCI training in the context of a real rehabilitation program and in terms of clinical and neurophysiological benefits observed in the patients

    Brain-machine interfaces for rehabilitation in stroke: A review

    Get PDF
    BACKGROUND: Motor paralysis after stroke has devastating consequences for the patients, families and caregivers. Although therapies have improved in the recent years, traditional rehabilitation still fails in patients with severe paralysis. Brain-machine interfaces (BMI) have emerged as a promising tool to guide motor rehabilitation interventions as they can be applied to patients with no residual movement. OBJECTIVE: This paper reviews the efficiency of BMI technologies to facilitate neuroplasticity and motor recovery after stroke. METHODS: We provide an overview of the existing rehabilitation therapies for stroke, the rationale behind the use of BMIs for motor rehabilitation, the current state of the art and the results achieved so far with BMI-based interventions, as well as the future perspectives of neural-machine interfaces. RESULTS: Since the first pilot study by Buch and colleagues in 2008, several controlled clinical studies have been conducted, demonstrating the efficacy of BMIs to facilitate functional recovery in completely paralyzed stroke patients with noninvasive technologies such as the electroencephalogram (EEG). CONCLUSIONS: Despite encouraging results, motor rehabilitation based on BMIs is still in a preliminary stage, and further improvements are required to boost its efficacy. Invasive and hybrid approaches are promising and might set the stage for the next generation of stroke rehabilitation therapies.This study was funded by the Bundesministerium für Bildung und Forschung BMBF MOTORBIC (FKZ13GW0053)andAMORSA(FKZ16SV7754), the Deutsche Forschungsgemeinschaft (DFG), the fortüne-Program of the University of Tübingen (2422-0-0 and 2452-0-0), and the Basque GovernmentScienceProgram(EXOTEK:KK2016/00083). NIL was supported by the Basque Government’s scholarship for predoctoral students
    corecore