2,536 research outputs found

    A Motion-Driven Approach for Fine-Grained Temporal Segmentation of User-Generated Videos

    Get PDF
    This paper presents an algorithm for the temporal segmentation of user-generated videos into visually coherent parts that correspond to individual video capturing activities. The latter include camera pan and tilt, change in focal length and camera displacement. The proposed approach identifies the aforementioned activities by extracting and evaluating the region-level spatio-temporal distribution of the optical flow over sequences of neighbouring video frames. The performance of the algorithm was evaluated with the help of a newly constructed ground-truth dataset, against several state-of-the-art techniques and variations of them. Extensive evaluation indicates the competitiveness of the proposed approach in terms of detection accuracy, and highlight its suitability for analysing large collections of data in a time-efficient manner

    Gesture Recognition in Robotic Surgery: a Review

    Get PDF
    OBJECTIVE: Surgical activity recognition is a fundamental step in computer-assisted interventions. This paper reviews the state-of-the-art in methods for automatic recognition of fine-grained gestures in robotic surgery focusing on recent data-driven approaches and outlines the open questions and future research directions. METHODS: An article search was performed on 5 bibliographic databases with combinations of the following search terms: robotic, robot-assisted, JIGSAWS, surgery, surgical, gesture, fine-grained, surgeme, action, trajectory, segmentation, recognition, parsing. Selected articles were classified based on the level of supervision required for training and divided into different groups representing major frameworks for time series analysis and data modelling. RESULTS: A total of 52 articles were reviewed. The research field is showing rapid expansion, with the majority of articles published in the last 4 years. Deep-learning-based temporal models with discriminative feature extraction and multi-modal data integration have demonstrated promising results on small surgical datasets. Currently, unsupervised methods perform significantly less well than the supervised approaches. CONCLUSION: The development of large and diverse open-source datasets of annotated demonstrations is essential for development and validation of robust solutions for surgical gesture recognition. While new strategies for discriminative feature extraction and knowledge transfer, or unsupervised and semi-supervised approaches, can mitigate the need for data and labels, they have not yet been demonstrated to achieve comparable performance. Important future research directions include detection and forecast of gesture-specific errors and anomalies. SIGNIFICANCE: This paper is a comprehensive and structured analysis of surgical gesture recognition methods aiming to summarize the status of this rapidly evolving field

    Gesture Recognition and Control for Semi-Autonomous Robotic Assistant Surgeons

    Get PDF
    The next stage for robotics development is to introduce autonomy and cooperation with human agents in tasks that require high levels of precision and/or that exert considerable physical strain. To guarantee the highest possible safety standards, the best approach is to devise a deterministic automaton that performs identically for each operation. Clearly, such approach inevitably fails to adapt itself to changing environments or different human companions. In a surgical scenario, the highest variability happens for the timing of different actions performed within the same phases. This thesis explores the solutions adopted in pursuing automation in robotic minimally-invasive surgeries (R-MIS) and presents a novel cognitive control architecture that uses a multi-modal neural network trained on a cooperative task performed by human surgeons and produces an action segmentation that provides the required timing for actions while maintaining full phase execution control via a deterministic Supervisory Controller and full execution safety by a velocity-constrained Model-Predictive Controller

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Video Fragmentation and Reverse Search on the Web

    Get PDF
    This chapter is focused on methods and tools for video fragmentation and reverse search on the web. These technologies can assist journalists when they are dealing with fake news—which nowadays are being rapidly spread via social media platforms—that rely on the reuse of a previously posted video from a past event with the intention to mislead the viewers about a contemporary event. The fragmentation of a video into visually and temporally coherent parts and the extraction of a representative keyframe for each defined fragment enables the provision of a complete and concise keyframe-based summary of the video. Contrary to straightforward approaches that sample video frames with a constant step, the generated summary through video fragmentation and keyframe extraction is considerably more effective for discovering the video content and performing a fragment-level search for the video on the web. This chapter starts by explaining the nature and characteristics of this type of reuse-based fake news in its introductory part, and continues with an overview of existing approaches for temporal fragmentation of single-shot videos into sub-shots (the most appropriate level of temporal granularity when dealing with user-generated videos) and tools for performing reverse search of a video on the web. Subsequently, it describes two state-of-the-art methods for video sub-shot fragmentation—one relying on the assessment of the visual coherence over sequences of frames, and another one that is based on the identification of camera activity during the video recording—and presents the InVID web application that enables the fine-grained (at the fragment-level) reverse search for near-duplicates of a given video on the web. In the sequel, the chapter reports the findings of a series of experimental evaluations regarding the efficiency of the above-mentioned technologies, which indicate their competence to generate a concise and complete keyframe-based summary of the video content, and the use of this fragment-level representation for fine-grained reverse video search on the web. Finally, it draws conclusions about the effectiveness of the presented technologies and outlines our future plans for further advancing them
    • …
    corecore