2,362 research outputs found

    Error resilient H.264 coded video transmission over wireless channels

    Get PDF
    The H.264/AVC recommendation was first published in 2003 and builds on the concepts of earlier standards such as MPEG-2 and MPEG-4. The H.264 recommendation represents an evolution of the existing video coding standards and was developed in response to the growing need for higher compression. Even though H.264 provides for greater compression, H.264 compressed video streams are very prone to channel errors in mobile wireless fading channels such as 3G due to high error rates experienced. Common video compression techniques include motion compensation, prediction methods, transformation, quantization and entropy coding, which are the common elements of a hybrid video codecs. The ITU-T recommendation H.264 introduces several new error resilience tools, as well as several new features such as Intra Prediction and Deblocking Filter. The channel model used for the testing was the Rayleigh Fading channel with the noise component simulated as Additive White Gaussian Noise (AWGN) using QPSK as the modulation technique. The channel was used over several Eb/N0 values to provide similar bit error rates as those found in the literature. Though further research needs to be conducted, results have shown that when using the H.264 error resilience tools in protecting encoded bitstreams to minor channel errors improvement in the decoded video quality can be observed. The tools did not perform as well with mild and severe channel errors significant as the resultant bitstream was too corrupted. From this, further research in channel coding techniques is needed to determine if the bitstream can be protected from these sorts of error rate

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    Error concealment-aware encoding for robust video transmission

    Get PDF
    In this paper an error concealment-aware encoding scheme is proposed to improve the quality of decoded video in broadcast environments prone to transmission errors and data loss. The proposed scheme is based on a scalable coding approach where the best error concealment (EC) methods to be used at the decoder are optimally determined at the encoder and signalled to the decoder through SEI messages. Such optimal EC modes are found by simulating transmission losses followed by a lagrangian optimisation of the signalling rate - EC distortion cost. A generalised saliency-weighted distortion is used and the residue between coded frames and their EC substitutes is encoded using a rate-controlled enhancement layer. When data loss occurs the decoder uses the signalling information is used at the decoder, in case of data loss, to improve the reconstruction quality. The simulation results show that the proposed method achieves consistent quality gains in comparison with other reference methods and previous works. Using only the EC mode signalling, i.e., without any residue transmitted in the enhancement layer, an average PSNR gain up to 2.95 dB is achieved, while using the full EC-aware scheme, i.e., including residue encoded in the enhancement layer, the proposed scheme outperforms other comparable methods, with PSNR gain up to 3.79 dB

    Error concealment techniques for H.264/MVC encoded sequences

    Get PDF
    This work is partially funded by the Strategic Educational Pathways Scholarship Scheme (STEPS-Malta). This scholarship is partly financed by the European Union–European Social Fund (ESF 1.25).The H.264/MVC standard offers good compression ratios for multi-view sequences by exploiting spatial, temporal and interview image dependencies. This works well in error-free channels, however in the event of transmission errors, it leads to the propagation of the distorted macro-blocks, degrading the quality of experience of the user. This paper reviews the state-of-the-art error concealment solutions and proposes a low complexity concealment method that can be used with multi-view video coding. The error resilience techniques used to aid error concealment are also identified. Results obtained demonstrate that good multi-view video reconstruction can be obtained with this approach.peer-reviewe

    Video Transmission over MIMO-OFDM System: MDC and Space-Time Coding-Based Approaches

    Get PDF
    MIMO-OFDM is a promising technique for the broadband wireless communication system. In this paper, we propose a novel scheme that integrates multiple-description coding (MDC), error-resilient video coding, and unequal error protection strategy with hybrid space-time coding structure for robust video transmission over MIMO-OFDM system. The proposed MDC coder generates multiple bitstreams of equal importance which are very suitable for multiple-antennas system. Furthermore, according to the contribution to the reconstructed video quality, we apply unequal error protection strategy using BLAST and STBC space-time codes for each video bitstream. Experimental results have demonstrated that the proposed scheme can be an excellent alternative to achieve desired tradeoff between the reconstructed video quality and the transmission efficiency
    corecore