568 research outputs found

    Robust Procedures for Obtaining Assembly Contact State Extremal Configurations

    Get PDF
    Two important components in the selection of an admittance that facilitates force-guided assembly are the identification of: 1) the set of feasible contact states, and 2) the set of configurations that span each contact state, i.e., the extremal configurations. We present a procedure to automatically generate both sets from CAD models of the assembly parts. In the procedure, all possible combinations of principle contacts are considered when generating hypothesized contact states. The feasibility of each is then evaluated in a genetic algorithm based optimization procedure. The maximum and minimum value of each of the 6 configuration variables spanning each contact state are obtained by again using genetic algorithms. Together, the genetic algorithm approach, the hierarchical data structure containing the states, the relationships among the states, and the extremals within each state are used to provide a reliable means of identifying all feasible contact states and their associated extremal configurations

    External polygon containment problems

    Get PDF
    AbstractGiven a convex polygonal object P with k vertices and an environment consisting of polygonal obstacles with a total of n corners, we seek a placement for the largest copy of P that does not intersect any of the obstacles, allowing translation, rotation and scaling. We employ the parametric search technique of Megiddo (1983), and the fixed size polygon placement algorithms developed by Leven and Sharir (1987), to obtain an algorithm that runs in time O(k2nλ6(kn)log3(kn)loglog(kn)). We also present several other efficient algorithms for restricted variants of the extremal polygon containment problem, using the same ideas. These variants include: placement of the largest homothetic copies of one or two convex polygons in another convex polygon and placement of the largest similar copy of a triangle in a convex polygon

    High-Dimensional Design Evaluations For Self-Aligning Geometries

    Get PDF
    Physical connectors with self-aligning geometry aid in the docking process for many robotic and automatic control systems such as robotic self-reconfiguration and air-to-air refueling. This self-aligning geometry provides a wider range of acceptable error tolerance in relative pose between the two rigid objects, increasing successful docking chances. In a broader context, mechanical alignment properties are also useful for other cases such as foot placement and stability, grasping or manipulation. Previously, computational limitations and costly algorithms prevented high-dimensional analysis. The algorithms presented in this dissertation will show a reduced computational time and improved resolution for this kind of problem. This dissertation reviews multiple methods for evaluating modular robot connector geometries as a case study in determining alignment properties. Several metrics are introduced in terms of the robustness of the alignment to errors across the full dimensional range of possible offsets. Algorithms for quantifying error robustness will be introduced and compared in terms of accuracy, reliability, and computational cost. Connector robustness is then compared across multiple design parameters to find trends in alignment behavior. Methods developed and compared include direct simulation and contact space analysis algorithms (geometric by a \u27pre-partitioning\u27 method, and discrete by flooding). Experimental verification for certain subsets is also performed to confirm the results. By evaluating connectors using these algorithms we obtain concrete metric values. We then quantitatively compare their alignment capabilities in either SE(2) or SE(3) under a pseudo-static assumption

    A constraint-stabilized time-stepping approach for piecewise smooth multibody dynamics

    Get PDF
    Rigid multibody dynamics is an important area of mathematical modeling which attempts to predict the position and velocity of a system of rigid bodies. Many methods will use smooth bodies without friction. The task is made especially more difficult in the face of noninterpenetration constraints, joint constraints, and friction forces. The difficulty that arises when noninterpenetration constraints are enforced is directly related to the fact that the usual methods of computing the distance between bodies do not give any indication of the amount of penetration when two bodies interpenetrate. Because we wish to calculate vectors that are normal to contact, and because it is necessary to determine the amount of penetration, when it exists, the classical computation of the depth of penetration when applied to convex polyhedral bodies is inefficient.We hereby describe a new method of determining when two convex polyhedra intersect and of evaluating a measure of the amount of penetration, when it exists. Our method is much more efficient than the classic computation of the penetration depth since it can be shown that its complexity grows only linearly with the size of the problem. We use our method to construct a signed distance function and implement it for use with a method for achieving geometrical constraint stabilization for a linear-complementarity-based time-stepping scheme for rigid multibody dynamics with joints, contact, and friction which, before now, was not equipped to handle polyhedral bodies. During our analysis, we describe how to compute normal vectors at contact, despite the cases when the classic derivative fails to exist.We put this analysis into a time-stepping procedure that uses a convex relaxation of a mixed linear complementarity problem with a resulting fixed point iteration that is guaranteed to converge if the friction is not too large, the time step is not too large, and the initial solution is feasible. Finally, we construct an algorithm that achieves constraint stabilization with quadratic convergence.The numerical results proved to be quite satisfactory, implying that the constraint stabilization holds, and that quadratic convergence exists

    On the Power of Manifold Samples in Exploring Configuration Spaces and the Dimensionality of Narrow Passages

    Full text link
    We extend our study of Motion Planning via Manifold Samples (MMS), a general algorithmic framework that combines geometric methods for the exact and complete analysis of low-dimensional configuration spaces with sampling-based approaches that are appropriate for higher dimensions. The framework explores the configuration space by taking samples that are entire low-dimensional manifolds of the configuration space capturing its connectivity much better than isolated point samples. The contributions of this paper are as follows: (i) We present a recursive application of MMS in a six-dimensional configuration space, enabling the coordination of two polygonal robots translating and rotating amidst polygonal obstacles. In the adduced experiments for the more demanding test cases MMS clearly outperforms PRM, with over 20-fold speedup in a coordination-tight setting. (ii) A probabilistic completeness proof for the most prevalent case, namely MMS with samples that are affine subspaces. (iii) A closer examination of the test cases reveals that MMS has, in comparison to standard sampling-based algorithms, a significant advantage in scenarios containing high-dimensional narrow passages. This provokes a novel characterization of narrow passages which attempts to capture their dimensionality, an attribute that had been (to a large extent) unattended in previous definitions.Comment: 20 page

    Motion Planning via Manifold Samples

    Full text link
    We present a general and modular algorithmic framework for path planning of robots. Our framework combines geometric methods for exact and complete analysis of low-dimensional configuration spaces, together with practical, considerably simpler sampling-based approaches that are appropriate for higher dimensions. In order to facilitate the transfer of advanced geometric algorithms into practical use, we suggest taking samples that are entire low-dimensional manifolds of the configuration space that capture the connectivity of the configuration space much better than isolated point samples. Geometric algorithms for analysis of low-dimensional manifolds then provide powerful primitive operations. The modular design of the framework enables independent optimization of each modular component. Indeed, we have developed, implemented and optimized a primitive operation for complete and exact combinatorial analysis of a certain set of manifolds, using arrangements of curves of rational functions and concepts of generic programming. This in turn enabled us to implement our framework for the concrete case of a polygonal robot translating and rotating amidst polygonal obstacles. We demonstrate that the integration of several carefully engineered components leads to significant speedup over the popular PRM sampling-based algorithm, which represents the more simplistic approach that is prevalent in practice. We foresee possible extensions of our framework to solving high-dimensional problems beyond motion planning.Comment: 18 page
    corecore