30,494 research outputs found

    The weighted stable matching problem

    Get PDF
    We study the stable matching problem in non-bipartite graphs with incomplete but strict preference lists, where the edges have weights and the goal is to compute a stable matching of minimum or maximum weight. This problem is known to be NP-hard in general. Our contribution is two fold: a polyhedral characterization and an approximation algorithm. Previously Chen et al. have shown that the stable matching polytope is integral if and only if the subgraph obtained after running phase one of Irving's algorithm is bipartite. We improve upon this result by showing that there are instances where this subgraph might not be bipartite but one can further eliminate some edges and arrive at a bipartite subgraph. Our elimination procedure ensures that the set of stable matchings remains the same, and thus the stable matching polytope of the final subgraph contains the incidence vectors of all stable matchings of our original graph. This allows us to characterize a larger class of instances for which the weighted stable matching problem is polynomial-time solvable. We also show that our edge elimination procedure is best possible, meaning that if the subgraph we arrive at is not bipartite, then there is no bipartite subgraph that has the same set of stable matchings as the original graph. We complement these results with a 22-approximation algorithm for the minimum weight stable matching problem for instances where each agent has at most two possible partners in any stable matching. This is the first approximation result for any class of instances with general weights.Comment: This is an extended version of a paper to appear at the The Fourth International Workshop on Matching Under Preferences (MATCH-UP 2017

    Fast Evaluation of Interlace Polynomials on Graphs of Bounded Treewidth

    Full text link
    We consider the multivariate interlace polynomial introduced by Courcelle (2008), which generalizes several interlace polynomials defined by Arratia, Bollobas, and Sorkin (2004) and by Aigner and van der Holst (2004). We present an algorithm to evaluate the multivariate interlace polynomial of a graph with n vertices given a tree decomposition of the graph of width k. The best previously known result (Courcelle 2008) employs a general logical framework and leads to an algorithm with running time f(k)*n, where f(k) is doubly exponential in k. Analyzing the GF(2)-rank of adjacency matrices in the context of tree decompositions, we give a faster and more direct algorithm. Our algorithm uses 2^{3k^2+O(k)}*n arithmetic operations and can be efficiently implemented in parallel.Comment: v4: Minor error in Lemma 5.5 fixed, Section 6.6 added, minor improvements. 44 pages, 14 figure

    On Sparsification for Computing Treewidth

    Full text link
    We investigate whether an n-vertex instance (G,k) of Treewidth, asking whether the graph G has treewidth at most k, can efficiently be made sparse without changing its answer. By giving a special form of OR-cross-composition, we prove that this is unlikely: if there is an e > 0 and a polynomial-time algorithm that reduces n-vertex Treewidth instances to equivalent instances, of an arbitrary problem, with O(n^{2-e}) bits, then NP is in coNP/poly and the polynomial hierarchy collapses to its third level. Our sparsification lower bound has implications for structural parameterizations of Treewidth: parameterizations by measures that do not exceed the vertex count, cannot have kernels with O(k^{2-e}) bits for any e > 0, unless NP is in coNP/poly. Motivated by the question of determining the optimal kernel size for Treewidth parameterized by vertex cover, we improve the O(k^3)-vertex kernel from Bodlaender et al. (STACS 2011) to a kernel with O(k^2) vertices. Our improved kernel is based on a novel form of treewidth-invariant set. We use the q-expansion lemma of Fomin et al. (STACS 2011) to find such sets efficiently in graphs whose vertex count is superquadratic in their vertex cover number.Comment: 21 pages. Full version of the extended abstract presented at IPEC 201

    Kernel Bounds for Structural Parameterizations of Pathwidth

    Full text link
    Assuming the AND-distillation conjecture, the Pathwidth problem of determining whether a given graph G has pathwidth at most k admits no polynomial kernelization with respect to k. The present work studies the existence of polynomial kernels for Pathwidth with respect to other, structural, parameters. Our main result is that, unless NP is in coNP/poly, Pathwidth admits no polynomial kernelization even when parameterized by the vertex deletion distance to a clique, by giving a cross-composition from Cutwidth. The cross-composition works also for Treewidth, improving over previous lower bounds by the present authors. For Pathwidth, our result rules out polynomial kernels with respect to the distance to various classes of polynomial-time solvable inputs, like interval or cluster graphs. This leads to the question whether there are nontrivial structural parameters for which Pathwidth does admit a polynomial kernelization. To answer this, we give a collection of graph reduction rules that are safe for Pathwidth. We analyze the success of these results and obtain polynomial kernelizations with respect to the following parameters: the size of a vertex cover of the graph, the vertex deletion distance to a graph where each connected component is a star, and the vertex deletion distance to a graph where each connected component has at most c vertices.Comment: This paper contains the proofs omitted from the extended abstract published in the proceedings of Algorithm Theory - SWAT 2012 - 13th Scandinavian Symposium and Workshops, Helsinki, Finland, July 4-6, 201
    • …
    corecore