104 research outputs found

    A physarum-inspired approach to supply chain network design

    Get PDF
    A supply chain is a system which moves products from a supplier to customers, which plays a very important role in all economic activities. This paper proposes a novel algorithm for a supply chain network design inspired by biological principles of nutrientsā€™ distribution in protoplasmic networks of slime mould Physarum polycephalum. The algorithm handles supply networks where capacity investments and product flows are decision variables, and the networks are required to satisfy product demands. Two features of the slime mould are adopted in our algorithm. The first is the continuity of flux during the iterative process, which is used in real-time updating of the costs associated with the supply links. The second feature is adaptivity. The supply chain can converge to an equilibrium state when costs are changed. Numerical examples are provided to illustrate the practicality and flexibility of the proposed method algorithm

    Evaluation of French motorway network in relation to slime mould transport networks

    Get PDF
    Ā© The Author(s) 2016. France has developed a high quality motorway system that has been rapidly rationalised and matured in the late 20th century yet has been founded on ancient, Roman infrastructures. The development of the motorway system is thus an iterative method associated with hierarchical ā€˜top-downā€™ processes taking into consideration factors such as population density, network demand, location of natural resources, civil engineering challenges and population growth. At the opposite extreme to this approach is the development of transport networks within simple biological systems which are typically decentralised, dynamic and emerge from simple, local and ā€˜bottom-upā€™ interactions. We examine the notion, and to what extent, that the structure of a complex motorway network could be predicted by the transport network of the single-celled slime mould Physarum polycephalum. This comparison is explored through its ability to ā€˜deduceā€™ the French motorway network in a series of analogue and digital experiments. We compare Physarum network and motorway network topology in relation to proximity graphs and assess the trade-off between connectivity and minimal network length with a bottom-up model of a virtual plasmodium. We demonstrate that despite the apparent complexity of the challenge Physarum can successfully apply its embodied intelligence to rationalise the motorway topology. We also demonstrate that such calculations prove challenging in the face of significant obstacles such as, mountainous terrain and may account for the missing route between Nice, Grenoble Avignon and Lyon. Finally, we discuss the topological findings with respect to circle and spoke city planning infrastructures and certain species of web-building spiders

    A biologically inspired network design model

    Get PDF
    A network design problem is to select a subset of links in a transport network that satisfy passengers or cargo transportation demands while minimizing the overall costs of the transportation. We propose a mathematical model of the foraging behaviour of slime mould P. polycephalum to solve the network design problem and construct optimal transport networks. In our algorithm, a traffic flow between any two cities is estimated using a gravity model. The flow is imitated by the model of the slime mould. The algorithm model converges to a steady state, which represents a solution of the problem. We validate our approach on examples of major transport networks in Mexico and China. By comparing networks developed in our approach with the man-made highways, networks developed by the slime mould, and a cellular automata model inspired by slime mould, we demonstrate the flexibility and efficiency of our approach
    • ā€¦
    corecore