13 research outputs found

    Travelling-wave frequency conversion.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Durban, 1985.Travelling-wave distributed amplifiers are providing gain over broad frequency ranges for microwave applications. Similar concepts are applicable to distributed mixers and, with the use of controlled feedback, to a multifunction component simultaneously emulating a mixer, amplifier and an oscillator. The concept of this new travelling-wave frequency converter is introduced and data for a discrete component test circuit is presented. To facilitate the converter operation a new three-port travelling-wave mixer is introduced and characterized. Four-port scattering and wave scattering transformations are derived as a method of analysis of the four-port distributed structure. This enables sequential circuit analysis on a small computer. Practical applications unique to the advanced automatic network analyser, including time domain measurements, are presented to characterize test circuits as well as to develop ancillary equipment such as a transistor test fixture. Automated error corrected transistor measurements and de-embedding are also discussed. A piecewise linear quantum mechanical method of modelling the conduction channel of a short gate field effect transistor is given to aid the extrapolation of the distributed frequency converter concept to submicron and heterojunction structures

    An acoustic charge transport imager for high definition television applications

    Get PDF
    The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4

    The development of sub-25 nm III-V High Electron Mobility Transistors

    Get PDF
    High Electron Mobility Transistors (HEMTs) are crucially important devices in microwave circuit applications. As the technology has matured, new applications have arisen, particularly at millimetre-wave and sub-millimetre wave frequencies. There now exists great demand for low-visibility, security and medical imaging in addition to telecommunications applications operating at frequencies well above 100 GHz. These new applications have driven demand for high frequency, low noise device operation; key areas in which HEMTs excel. As a consequence, there is growing incentive to explore the ultimate performance available from such devices. As with all FETs, the key to HEMT performance optimisation is the reduction of gate length, whilst optimally scaling the rest of the device and minimising parasitic extrinsic influences on device performance. Although HEMTs have been under development for many years, key performance metrics have latterly slowed in their evolution, largely due to the difficulty of fabricating devices at increasingly nanometric gate lengths and maintaining satisfactory scaling and device performance. At Glasgow, the world-leading 50 nm HEMT process developed in 2003 had not since been improved in the intervening five years. This work describes the fabrication of sub-25 nm HEMTs in a robust and repeatable manner by the use of advanced processing techniques: in particular, electron beam lithography and reactive ion etching. This thesis describes firstly the development of robust gate lithography for sub-25 nm patterning, and its incorporation into a complete device process flow. Secondly, processes and techniques for the optimisation of the complete device are described. This work has led to the successful fabrication of functional 22 nm HEMTs and the development of 10 nm scale gate pattern transfer: simultaneously some of the shortest gate length devices reported and amongst the smallest scale structures ever lithographically defined on III-V substrates. The first successful fabrication of implant-isolated planar high-indium HEMTs is also reported amongst other novel secondary processes

    Design and implementation of gallium arsenide digital integrated circuits

    Get PDF

    Distributed Modeling Approach for Electrical and Thermal Analysis of High-Frequency Transistors

    Get PDF
    The research conducted in this dissertation is focused on developing modeling approaches for analyzing high-frequency transistors and present solutions for optimizing the device output power and gain. First, a literature review of different transistor types utilized in high-frequency regions is conducted and gallium nitride high electron mobility transistor is identified as the promising device for these bands. Different structural configurations and operating modes of these transistors are explained, and their applications are discussed. Equivalent circuit models and physics-based models are also introduced and their limitations for analyzing the small-signal and large-signal behavior of these devices are explained. Next, a model is developed to investigate the thermal properties of different semiconductor substrates. Heat dissipation issues associated with some substrate materials, such as sapphire, silicon, and silicon carbide are identified, and thinning the substrates is proposed as a preliminary solution for addressing them. This leads to a comprehensive and universal approach to increase the heat dissipation capabilities of any substrate material and 2X-3X improvement is achieved according to this novel technique. Moreover, for analyzing the electrical behavior of these devices, a small-signal model is developed to examine the operation of transistors in the linear regions. This model is obtained based on an equivalent circuit which includes the distributed effects of the device at higher frequency bands. In other words, the wave propagation effects and phase velocity mismatches are considered when developing the model. The obtained results from the developed simulation tool are then compared with the measurements and excellent agreement is achieved between the two cases, which serves as the proof for validation. Additionally, this model is extended to predict and analyze the nonlinear behavior of these transistors and the developed tool is validated according to the obtained large-signal analysis results from measurement. Based on the developed modeling approach, a novel fabrication technique is also proposed which ensures the high-frequency operability of current devices with the available fabrication technologies, without forfeiting the gain and output power. The technical details regarding this approach and a sample configuration of the electrode model for the transistor based on the proposed design are also provided

    Millimeter-wave GaN high electron mobility transistors and their integration with silicon electronics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references.In spite of the great progress in performance achieved during the last few years, GaN high electron mobility transistors (HEMTs) still have several important issues to be solved for millimeter-wave (30 ~ 300 GHz) applications. One of the key challenges is to improve its high frequency characteristics. In this thesis, we particularly focus on fT and fma, two of the most important figures of merit in frequency performance of GaN HEMTs and investigate them both analytically and experimentally. Based on an improved physical understanding and new process technologies, we aim to demonstrate the state-of-the-art high frequency performance of GaN HEMTs. To maximize fmax, parasitic components in the device (Ri, R, Rg, Cgd, and go) are carefully minimized and the optimized 60-nm AlGaN/GaN HEMT shows a very high fmax of 300 GHz. The lower-than-expected fT observed in many AlGaN/GaN HEMTs is attributed to a significant drop of the intrinsic transconductance at high frequency (RF gm) with respect to the intrinsic DC g. (called RF gm-collapse). By suppressing RF gm-collapse and harmoniously scaling the device, a record fT of 225 GHz is achieved in the 55-nm AlGaN/GaN HEMT. Another important challenge for the wide adoption of GaN devices is to develop suitable technology to integrate these GaN transistors with Si(100) electronics. In this thesis, we demonstrate a new technology to integrate, for the first time, GaN HEMTs and Si(100) MOSFETs on the same chip. This integration enables the development of hybrid circuits that take advantage of the high-frequency and power capability of GaN and the unsurpassed circuit scalability and complexity of Si electronics.by Jinwook W. Chung.Ph.D

    ADVANCED MODELING APPROACHES FOR MICROWAVE FET DEVICES & SUB-SYSTEMS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Advanced physical modelling of step graded Gunn Diode for high power TeraHertz sources

    Get PDF
    The mm-wave frequency range is being increasingly researched to close the gap between 100 to 1000 GHz, the least explored region of the electromagnetic spectrum, often termed as the 'THz Gap'. The ever increasing demand for compact, portable and reliable THz (Terahertz) devices and the huge market potential for THz system have led to an enormous amount of research and development in the area for a number of years. The Gunn Diode is expected to play a significant role in the development of low cost solid state oscillators which will form an essential part of these THz systems.Gunn and mixer diodes will 'power' future THz systems. The THz frequencies generation methodology is based on a two-stage module. The initial frequency source is provided by a high frequency Gunn diode and is the main focus of this work. The output from this diode is then coupled into a multiplier module. The multiplier provides higher frequencies by the generation of harmonics of the input signal by means of a non-linear element, such as Schottky diode Varactor. A realistic Schottky diode model developed in SILVACOTM is presented in this work.This thesis describes the work done to develop predictive models for Gunn Diode devices using SILVACOTM. These physically-based simulations provide the opportunity to increase understanding of the effects of changes to the device's physical structure, theoretical concepts and its general operation. Thorough understanding of device physics was achieved to develop a reliable Gunn diode model. The model development included device physical structure building, material properties specification, physical models definition and using appropriate biasing conditions.The initial goal of the work was to develop a 2D model for a Gunn diode commercially manufactured by e2v Technologies Plc. for use in second harmonic mode 77GHz Intelligent Adaptive Cruise Control (ACC) systems for automobiles. This particular device was chosen as its operation is well understood and a wealth of data is available for validation of the developed physical model. The comparisons of modelled device results with measured results of a manufactured device are discussed in detail. Both the modelled and measured devices yielded similar I-V characteristics and so validated the choice of the physical models selected for the simulations. During the course of this research 2D, 3D rectangular, 3D cylindrical and cylindrical modelled device structures were developed and compared to measured results.The injector doping spike concentration was varied to study its influence on the electric field in the transit region, and was compared with published and measured data.Simulated DC characteristics were also compared with measured results for higher frequency devices. The devices mostly correspond to material previously grown for experimental studies in the development of D-band GaAs Gunn devices. Ambient temperature variations were also included in both simulated and measured data.Transient solutions were used to obtain a time dependent response such as determining the device oscillating frequency under biased condition. These solutions provided modelled device time-domain responses. The time-domain simulations of higher frequency devices which were developed used modelling measured approach are discussed. The studied devices include 77GHz (2nd harmonic), 125 GHz (2nd harmonic) and 100 GHz fundamental devices.During the course of this research, twelve research papers were disseminated. The results obtained have proved that the modelling techniques used, have provided predictive models for novel Transferred Electron Devices (TEDs) operating above 100GHz.EThOS - Electronic Theses Online ServiceNational University of Sciences and Technology (NUST, Pakistan)GBUnited Kingdo

    Structural and electrical investigation of ohmic contacts to gallum arsenide and indium phosphide

    Get PDF
    This dissertation is concerned with the fabrication and characterization of ohmic contacts to n-type GaAs and InP. The main aim was to correlate the interdiffusional and metallurgical reactions that occurred between the metal and the semiconductor substrates during the annealing step, with the corresponding electrical observations. Following a review of the fabrication techniques and ohmic metallization contact systems used on n-type GaAs and InP, present metal-semiconductor junction theories are discussed. This includes a discussion of the various techniques used for specific contact resistance measurements. Furthermore, the experimental procedures and equipment used are also presented. Auger electron spectroscopy (AES) was utilized to investigate GaAs and InP surfaces after different chemical cleaning and etching treatments. These results are used as background for the fabrication of ohmic contacts. By comparing Ni and In as wetting agents, together with Au-Ge on n-type GaAs, the deduction was made that Ni acts chemically and physically to produce a better contact than In. The morphology of Ni/Au-Ge contacts on GaAs was improved by introducing an ion implantation step. From structural investigations it follows that the non-uniformity of the Au-Ge based contacts can be related to an Au-Ge-As phase that was formed at the metal-GaAs interface region. In parallel with the work on GaAs, contacts ton-type InP have also been studied. Noticeable lateral spreading of annealed Au and Au-based contacts to InP was observed. As a result, alternative fabrication techniques and ohmic contact systems were investigated. Two such systems were the Ti/Pt and Ti/Ni metallization schemes. AES, morphology studies and specific contact resistance (re) measurements of these contacts to Ar+ sputtered and non-sputtered InP substrates were carried out. These results were compared with the widely used Ni/Au-Ge contact system. The latter system yielded the lowest specific contact resistance values, while the best surface morphology was observed with the Ti/Ni contact system.Thesis (PhD)--University of Pretoria, 1991.PhysicsPhDUnrestricte
    corecore