9 research outputs found

    Large-Scale Network Plan Optimization Using Improved Particle Swarm Optimization Algorithm

    Get PDF
    No relevant reports have been reported on the optimization of a large-scale network plan with more than 200 works due to the complexity of the problem and the huge amount of computation. In this paper, an improved particle swarm optimization algorithm via optimization of initial particle swarm (OIPSO) is first explained by the stochastic processes theory. Then two optimization examples are solved using this method which are the optimization of resource-leveling with fixed duration and the optimization of resources constraints with shortest project duration in a large network plan with 223 works. Through these two examples, under the same number of iterations, it is proven that the improved algorithm (OIPSO) can accelerate the optimization speed and improve the optimization effect of particle swarm optimization (PSO)

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF

    Rethinking the risk matrix

    Get PDF
    So far risk has been mostly defined as the expected value of a loss, mathematically PL (being P the probability of an adverse event and L the loss incurred as a consequence of the adverse event). The so called risk matrix follows from such definition. This definition of risk is justified in a long term “managerial” perspective, in which it is conceivable to distribute the effects of an adverse event on a large number of subjects or a large number of recurrences. In other words, this definition is mostly justified on frequentist terms. Moreover, according to this definition, in two extreme situations (high-probability/low-consequence and low-probability/high-consequence), the estimated risk is low. This logic is against the principles of sustainability and continuous improvement, which should impose instead both a continuous search for lower probabilities of adverse events (higher and higher reliability) and a continuous search for lower impact of adverse events (in accordance with the fail-safe principle). In this work a different definition of risk is proposed, which stems from the idea of safeguard: (1Risk)=(1P)(1L). According to this definition, the risk levels can be considered low only when both the probability of the adverse event and the loss are small. Such perspective, in which the calculation of safeguard is privileged to the calculation of risk, would possibly avoid exposing the Society to catastrophic consequences, sometimes due to wrong or oversimplified use of probabilistic models. Therefore, it can be seen as the citizen’s perspective to the definition of risk

    Applied Ecology and Environmental Research 2017

    Get PDF
    corecore