4,797 research outputs found

    Polynomial Interpretations for Higher-Order Rewriting

    Get PDF
    The termination method of weakly monotonic algebras, which has been defined for higher-order rewriting in the HRS formalism, offers a lot of power, but has seen little use in recent years. We adapt and extend this method to the alternative formalism of algebraic functional systems, where the simply-typed lambda-calculus is combined with algebraic reduction. Using this theory, we define higher-order polynomial interpretations, and show how the implementation challenges of this technique can be tackled. A full implementation is provided in the termination tool WANDA

    Blazes: Coordination Analysis for Distributed Programs

    Full text link
    Distributed consistency is perhaps the most discussed topic in distributed systems today. Coordination protocols can ensure consistency, but in practice they cause undesirable performance unless used judiciously. Scalable distributed architectures avoid coordination whenever possible, but under-coordinated systems can exhibit behavioral anomalies under fault, which are often extremely difficult to debug. This raises significant challenges for distributed system architects and developers. In this paper we present Blazes, a cross-platform program analysis framework that (a) identifies program locations that require coordination to ensure consistent executions, and (b) automatically synthesizes application-specific coordination code that can significantly outperform general-purpose techniques. We present two case studies, one using annotated programs in the Twitter Storm system, and another using the Bloom declarative language.Comment: Updated to include additional materials from the original technical report: derivation rules, output stream label

    Distance entropy cartography characterises centrality in complex networks

    Full text link
    We introduce distance entropy as a measure of homogeneity in the distribution of path lengths between a given node and its neighbours in a complex network. Distance entropy defines a new centrality measure whose properties are investigated for a variety of synthetic network models. By coupling distance entropy information with closeness centrality, we introduce a network cartography which allows one to reduce the degeneracy of ranking based on closeness alone. We apply this methodology to the empirical multiplex lexical network encoding the linguistic relationships known to English speaking toddlers. We show that the distance entropy cartography better predicts how children learn words compared to closeness centrality. Our results highlight the importance of distance entropy for gaining insights from distance patterns in complex networks.Comment: 11 page

    Abstract unordered and ordered trees CRDT

    Get PDF
    Trees are fundamental data structure for many areas of computer science and system engineering. In this report, we show how to ensure eventual consistency of optimistically replicated trees. In optimistic replication, the different replicas of a distributed system are allowed to diverge but should eventually reach the same value if no more mutations occur. A new method to ensure eventual consistency is to design Conflict-free Replicated Data Types (CRDT). In this report, we design a collection of tree CRDT using existing set CRDTs. The remaining concurrency problems particular to tree data structure are resolved using one or two layers of correction algorithm. For each of these layer, we propose different and independent policies. Any combination of set CRDT and policies can be constructed, giving to the distributed application programmer the entire control of the behavior of the shared data in face of concurrent mutations. We also propose to order these trees by adding a positioning layer which is also independent to obtain a collection of ordered tree CRDTs

    Injecting Abstract Interpretations into Linear Cost Models

    Full text link
    We present a semantics based framework for analysing the quantitative behaviour of programs with regard to resource usage. We start from an operational semantics equipped with costs. The dioid structure of the set of costs allows for defining the quantitative semantics as a linear operator. We then present an abstraction technique inspired from abstract interpretation in order to effectively compute global cost information from the program. Abstraction has to take two distinct notions of order into account: the order on costs and the order on states. We show that our abstraction technique provides a correct approximation of the concrete cost computations

    Conditionals and modularity in general logics

    Full text link
    In this work in progress, we discuss independence and interpolation and related topics for classical, modal, and non-monotonic logics

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery
    • …
    corecore