1,034 research outputs found

    Contactless measurement of electric current using magnetic sensors

    Get PDF
    We review recent advances in magnetic sensors for DC/AC current transducers, especially novel AMR sensors and integrated fluxgates, and we make critical comparison of their properties. Most contactless electric current transducers use magnetic cores to concentrate the flux generated by the measured current and to shield the sensor against external magnetic fields. In order to achieve this, the magnetic core should be massive. We present coreless current transducers which are lightweight, linear and free of hysteresis and remanence. We also show how to suppress their weak point: crosstalk from external currents and magnetic fields

    High performance readout circuits and devices for Lorentz force resonant CMOS-MEMS magnetic sensors

    Get PDF
    In the last decades, sensing capabilities of martphones have greatly improved since the early mobile phones of the 90’s. Moreover, wearables and the automotive industry require increasing electronics and sensing sophistication. In such echnological advance, Micro Electro Mechanical Systems (MEMS) have played an important role as accelerometers and gyroscopes were the first sensors based on MEMS technology massively introduced in the market. In contrast, it still does not exist a commercial MEMS-based compass, even though Lorentz force MEMS magnetometers were first proposed in the late 90’s. Currently, Lorentz force MEMS magnetometers have been under the spotlight as they can offer an integrated solution to nowadays sensing power. As a consequence, great advances have been achieved, but various bottlenecks limit the introduction of Lorentz force MEMS compasses in the market. First, current MEMS magnetometers require high current consumption and high biasing voltages to achieve good sensitivities. Moreover, even though devices with excellent performance and sophistication are found in the literature, there is still a lack of research on the readout electronic circuits, specially in the digital signal processing, and closed loop control. Second, most research outcomes rely on custom MEMS fabrication rocesses to manufacture the devices. This is the same approach followed in current commercial MEMS, but it requires different fabrication processes for the electronics and the MEMS. As a consequence, manufacturing cost is high and sensor performance is affected by the MEMS-electronics interface parasitics. This dissertation presents potential solutions to these issues in order to pave the road to the commercialization of Lorentz force MEMS compasses. First, a complete closed loop, digitally controlled readout system is proposed. The readout circuitry, implemented with off-the-shelf commercial components, and the digital control, on an FPGA, are proposed as a proof of concept of the feasibility, and potential benefits, of such architecture. The proposed system has a measured noise of 550 nT / vHz while the MEMS is biased with 300 µA rms and V = 1 V . Second, various CMOS-MEMS magnetometers have been designed using the BEOL part of the TSMC and SMIC 180 nm standard CMOS processes, and wet and vapor etched. The devices measurement and characterisation is used to analyse the benefits and drawbacks of each design as well as releasing process. Doing so, a high volume manufacturing viability can be performed. Yield values as high as 86% have been obtained for one device manufactured in a SMIC 180 nm full wafer run, having a sensitivity of 2.82 fA/µT · mA and quality factor Q = 7.29 at ambient pressure. While a device manufactured in TSMC 180 nm has Q = 634.5 and a sensitivity of 20.26 fA/µT ·mA at 1 mbar and V = 1 V. Finally, an integrated circuit has been designed that contains all the critical blocks to perform the MEMS signal readout. The MEMS and the electronics have been manufactured using the same die area and standard TSMC 180 nm process in order to reduce parasitics and improve noise and current consumption. Simulations show that a resolution of 8.23 µT /mA for V = 1 V and BW = 10 Hz can be achieved with the designed device.En les últimes dècades, tenint en compte els primers telèfons mòbils dels anys 90, les capacitats de sensat dels telèfons intel·ligents han millorat notablement. A més, la indústria automobilística i de wearables necessiten cada cop més sofisticació en el sensat. Els Micro Electro Mechanical Systems (MEMS) han tingut un paper molt important en aquest avenç tecnològic, ja que acceleròmetres i giroscopis varen ser els primers sensors basats en la tecnologia MEMS en ser introduïts massivament al mercat. En canvi, encara no existeix en la indústria una brúixola electrònica basada en la tecnologia MEMS, tot i que els magnetòmetres MEMS varen ser proposats per primera vegada a finals dels anys 90. Actualment, els magnetòmetres MEMS basats en la força de Lorentz són el centre d'atenció donat que poden oferir una solució integrada a les capacitats de sensat actuals. Com a conseqüència, s'han aconseguit grans avenços encara que existeixen diversos colls d'ampolla que encara limiten la introducció al mercat de brúixoles electròniques MEMS basades en la força de Lorentz. Per una banda, els agnetòmetres MEMS actuals necessiten un consum de corrent i un voltatge de polarització elevats per aconseguir una bona sensibilitat. A més, tot i que a la literatura hi podem trobar dispositius amb rendiments i sofisticació excel·lents, encara existeix una manca de recerca en el circuit de condicionament, especialment de processat digital i control del llaç. Per altra banda, moltes publicacions depenen de processos de fabricació de MEMS fets a mida per fabricar els dispositius. Aquesta és la mateixa aproximació que s'utilitza actualment en la indústria dels MEMS, però té l'inconvenient que requereix processos de fabricació diferents pels MEMS i l’electrònica. Per tant, el cost de fabricació és alt i el rendiment del sensor queda afectat pels paràsits en la interfície entre els MEMS i l'electrònica. Aquesta tesi presenta solucions potencials a aquests problemes amb l'objectiu d'aplanar el camí a la comercialització de brúixoles electròniques MEMS basades en la força de Lorentz. En primer lloc, es proposa un circuit de condicionament complet en llaç tancat controlat digitalment. Aquest s'ha implementat amb components comercials, mentre que el control digital del llaç s'ha implementat en una FPGA, tot com una prova de concepte de la viabilitat i beneficis potencials que representa l'arquitectura proposada. El sistema presenta un soroll de 550 nT / vHz quan el MEMS està polaritzat amb 300 µArms i V = 1 V . En segon lloc, s'han dissenyat varis magnetòmetres CMOS-MEMS utilitzant la part BEOL dels processos CMOS estàndard de TSMC i SMIC 180 nm, que després s'han alliberat amb líquid i gas. La mesura i caracterització dels dispositius s’ha utilitzat per analitzar els beneficis i inconvenients de cada disseny i procés d’alliberament. D'aquesta manera, s'ha pogut realitzar un anàlisi de la viabilitat de la seva fabricació en massa. S'han obtingut valors de yield de fins al 86% per un dispositiu fabricat amb SMIC 180 nm en una oblia completa, amb una sensibilitat de 2.82 fA/µT · mA i un factor de qualitat Q = 7.29 a pressió ambient. Per altra banda, el dispositiu fabricat amb TSMC 180 nm presenta una Q = 634.5 i una sensibilitat de 20.26 fA/µT · mA a 1 mbar amb V = 1 V. Finalment, s'ha dissenyat un circuit integrat que conté tots els blocs per a realitzar el condicionament de senyal del MEMS. El MEMS i l'electrònica s'han fabricat en el mateix dau amb el procés estàndard de TSMC 180 nm per tal de reduir paràsits i millorar el soroll i el consum de corrent. Les simulacions mostren una resolució de 8.23 µT /mA amb V = 1 V i BW = 10 Hz pel dispositiu dissenyat

    An Improved Equivalent Simulation Model for CMOS Integrated Hall Plates

    Get PDF
    An improved equivalent simulation model for a CMOS-integrated Hall plate is described in this paper. Compared with existing models, this model covers voltage dependent non-linear effects, geometrical effects, temperature effects and packaging stress influences, and only includes a small number of physical and technological parameters. In addition, the structure of this model is relatively simple, consisting of a passive network with eight non-linear resistances, four current-controlled voltage sources and four parasitic capacitances. The model has been written in Verilog-A hardware description language and it performed successfully in a Cadence Spectre simulator. The model’s simulation results are in good agreement with the classic experimental results reported in the literature

    Development of GaN transducer and on-chip concentrator for galvanic current sensing

    Get PDF
    Gallium nitride (GaN) magnetic high electron mobility transistors (MagHEMTs) with different gate lengths intended for integration with magnetic flux concentrator for galvanic isolation are presented. Detailed discussions on the physical mechanisms behind the sensitivity change at room temperature with respect to gate geometry are given. The relative sensitivity of dual-drain GaN MagHEMTs with a device length of L = 65 μm and a width of W = 20 μm is measured at the highest of S = 17.21%/T and the lowest of S = 7.69%/T at VGS= -2 V and VGS= 0 V, respectively. In addition, a novel spiral magnetic flux concentrator with the conversion factor of up to FC= 96 mT/A is designed for improving the performance of the optimized MagHEMTs in ICs. It is predicted that a spiral configuration is a necessity to enhance the conversion factor for a long MagHEMT

    Pixellated radiation detectors for scientific applications

    Get PDF
    The work in this thesis is focused on characterisation and evaluation of two classes of science grade imaging radiation detectors. The first class is Monolithic Active Pixel Sensors (MAPS). The advances in CMOS fabrication technologies over the last four decades allowed MAPS to compete with Charge-Coupled Devices (CCD) in many applications. The technology also provides relatively inexpensive ways to tailor design to suit specific application needs. It is important to understand performance capabilities of new sensor designs through characterisation and optimisation of readout parameters. In this work three MAPSs were characterised. The first one - HEPAPS4 - designed for charged particle detection, with the potential technology application in the vertex detector for the International Linear Collider. The noise of the sensor was measured to be 35±5 e, which agrees well with simulated data. The dark current was found to be 175 pA/cm2. The SNR performance for minimum ionising particles detection was demonstrated to be 40. The sensor was also evaluated for indirect detection of thermal and fast neutrons using lithium and polyethylene converters. The technology performed well in such an application with an estimated fast neutron detection efficiency of ~0.01%. The second sensor characterised – Vanilla MAPS – was designed to evaluate new techniques for fast readout, small noise and reduced image lag. The system was capable to readout 150 full frames (520x520 pixels) per second; the sensor showed 14±4 e noise and decreased image lag. The dark current was found to be ~50 pA/cm2. The back-thinned version of the sensor demonstrated dramatic improvement in quantum efficiency from 0% to 20% at 220 nm. The third device is parametric sensor eLeNA. It features 14 test structure designed to evaluated noise reduction architectures. The most promising structures showed temporal noise values as low as 6 e and 20 e fixed pattern noise. Medipix as an example of the second class of imaging detectors - hybrid pixel detectors - was evaluated in two applications. It was used as the core element of the ATLAS radiation background monitoring system. The sensors were covered with neutron converters, which extended the number of radiation types that can be detected. X-ray calibration was performed, showing excellent tolerance of all 18 devices characterised. Detection efficiencies were estimated to be ~1% for thermal and ~0.1% for fast neutrons. The second application of Medipix was mass spectrometry. The detector was place in the focal plane of a prototype mass spectrometer. 2D representation of data allowed focusing correction of the ion beam. The system was capable to detect ions in the range of 5-25 keV. The detector characterisation with broad range of ions (from Cu to Pb) showed very good abundance agreement with table data

    CMOS nanophotonic sensor with integrated readout system

    Get PDF
    The measurement of nanophotonic sensors currently requires the use of external measuring equipment for their read-out such as an optical spectrum analyzer, spectrophotometer, or detectors. This requirement of external laboratory-based measuring equipment creates a “chip-in-a-lab” dilemma and hinders the use of nanophotonic sensors in practical applications. Making nanophotonic sensors usable in everyday life requires miniaturization of not only the sensor chip itself but also the equipment used for its measurement. In this paper, we have removed the need of external measuring equipment by monolithically integrating 1-D grating structures with a complementary metal-oxide-semiconductor (CMOS) integrated circuit having an array of photodiodes. By doing so, we get a direct electrical read-out of the refractive index changes induced when applying different analytes to grating structures. The gratings are made of CMOS compatible silicon nitride. Employing a nanophotonic sensor made of CMOS compatible material allows fabrication of the integrated sensor chip in a commercial CMOS foundry, enabling mass production for commercialization with low cost. Our results present a significant step toward transforming present laboratory-based nanophotonic sensors into practical portable devices to enable applications away from the analytical laboratory. We anticipate the work will have a major impact on technology for personalized medicine, environmental, and industrial sensing

    Design, fabrication, characterization and reliability study of CMOS-MEMS Lorentz-Force magnetometers

    Get PDF
    Tesi en modalitat de compendi de publicacionsToday, the most common form of mass-production semiconductor device fabrication is Complementary Metal-Oxide Semiconductor (CMOS) technology. The dedicated Integrated Circuit (IC) interfaces of commercial sensors are manufactured using this technology. The sensing elements are generally implemented using Micro-Electro-Mechanical-Systems (MEMS), which need to be manufactured using specialized micro-machining processes. Finally, the CMOS circuitry and the MEMS should ideally be combined in a single package. For some applications, integration of CMOS electronics and MEMS devices on a single chip (CMOS-MEMS) has the potential of reducing fabrication costs, size, parasitics and power consumption, compared to other integration approaches. Remarkably, a CMOS-MEMS device may be built with the back-end-of-line (BEOL) layers of the CMOS process. But, despite its advantages, this particular approach has proven to be very challenging given the current lack of commercial products in the market. The main objective of this Thesis is to prove that a high-performance MEMS, sealed and packaged in a standard package, may be accurately modeled and manufactured using the BEOL layers of a CMOS process in a reliable way. To attain this, the first highly reliable novel CMOS-MEMS Lorentz Force Magnetometer (LFM) was successfully designed, modeled, manufactured, characterized and subjected to several reliability tests, obtaining a comparable or superior performance to the typical solid-state magnetometers used in current smartphones. A novel technique to avoid magnetic offsets, the main drawback of LFMs, was presented and its performance confirmed experimentally. Initially, the issues encountered in the manufacturing process of MEMS using the BEOL layers of the CMOS process were discouraging. Vapor HF release of MEMS structures using the BEOL of CMOS wafers resulted in undesirable damaging effects that may lead to the conclusion that this manufacturing approach is not feasible. However, design techniques and workarounds for dealing with the observed issues were devised, tested and implemented in the design of the LFM presented in this Thesis, showing a clear path to successfully fabricate different MEMS devices using the BEOL.Hoy en día, la forma más común de producción en masa es una tecnología llamada Complementary Metal-Oxide Semiconductor (CMOS). La interfaz de los circuitos integrados (IC) de sensores comerciales se fabrica usando, precisamente, esta tecnología. Actualmente es común que los sensores se implementen usando Sistemas Micro-Electro-Mecánicos (MEMS), que necesitan ser fabricados usando procesos especiales de micro-mecanizado. En un último paso, la circuitería CMOS y el MEMS se combinan en un único elemento, llamado package. En algunas aplicaciones, la integración de la electrónica CMOS y los dispositivos MEMS en un único chip (CMOS-MEMS) alberga el potencial de reducir los costes de fabricación, el tamaño, los parásitos y el consumo, al compararla con otras formas de integración. Resulta notable que un dispositivo CMOS-MEMS pueda ser construido con las capas del back-end-of-line (BEOL) de un proceso CMOS. Pero, a pesar de sus ventajas, este enfoque ha demostrado ser un gran desafío como demuestra la falta de productos comerciales en el mercado. El objetivo principal de esta Tesis es probar que un MEMS de altas prestaciones, sellado y empaquetado en un encapsulado estándar, puede ser correctamente modelado y fabricado de una manera fiable usando las capas del BEOL de un proceso CMOS. Para probar esto mismo, el primer magnetómetro CMOS-MEMS de fuerza de Lorentz (LFM) fue exitosamente diseñado, modelado, fabricado, caracterizado y sometido a varias pruebas de fiabilidad, obteniendo un rendimiento comparable o superior al de los típicos magnetómetros de estado sólido, los cuales son usados en móviles actuales. Cabe destacar que en esta Tesis se presenta una novedosa técnica con la que se evitan offsets magnéticos, el mayor inconveniente de los magnetómetros de fuerza Lorentz. Su efectividad fue confirmada experimentalmente. En los inicios, los problemas asociados al proceso de fabricación de MEMS usando las capas BEOL de obleas CMOS resultaba desalentador. Liberar estructuras MEMS hechas con obleas CMOS con vapor de HF producía efectos no deseados que bien podrían llevar a la conclusión de que este enfoque de fabricación no es viable. Sin embargo, se idearon y probaron técnicas de diseño especiales y soluciones ad-hoc para contrarrestar estos efectos no deseados. Se implementaron en el diseño del magnetómetro de Lorentz presentado en esta Tesis, arrojando excelentes resultados, lo cual despeja el camino hacia la fabricación de diferentes dispositivos MEMS usando las capas BEOL.Postprint (published version

    Resonant Magnetic Field Sensors Based On MEMS Technology

    Get PDF
    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration

    Remotely interrogated MEMS pressure sensor

    Get PDF
    This thesis considers the design and implementation of passive wireless microwave readable pressure sensors on a single chip. Two novel-all passive devices are considered for wireless pressure operation. The first device consists of a tuned circuit operating at 10 GHz fabricated on SiO2 membrane, supported on a silicon wafer. A pressure difference across the membrane causes it to deflect so that a passive resonant circuit detunes. The circuit is remotely interrogated to read off the sensor data. The chip area is 20 mm2 and the membrane area is 2mm2 with thickness of 4 µm. Two on chip passive resonant circuits were investigated: a meandered dipole and a zigzag antenna. Both have a physical length of 4.25 mm. the sensors show a shift in their resonant frequency in response to changing pressure of 10.28-10.27 GHz for the meandered dipole, and 9.61-9.58 GHz for the zigzag antenna. The sensitivities of the meandered dipole and zigzag sensors are 12.5 kHz and 16 kHz mbar, respectively. The second device is a pressure sensor on CMOS chip. The sensing element is capacitor array covering an area of 2 mm2 on a membrane. This sensor is coupled with a dipole antenna operating at 8.77 GHz. The post processing of the CMOS chip is carried out only in three steps, and the sensor on its own shows a sensitivity of 0.47fF/mbar and wireless sensitivity of 27 kHz/mbar. The MIM capacitors on membrane can be used to detune the resonant frequency of an antenna
    corecore