316 research outputs found

    A Monitoring System for the BaBar INFN Computing Cluster

    Full text link
    Monitoring large clusters is a challenging problem. It is necessary to observe a large quantity of devices with a reasonably short delay between consecutive observations. The set of monitored devices may include PCs, network switches, tape libraries and other equipments. The monitoring activity should not impact the performances of the system. In this paper we present PerfMC, a monitoring system for large clusters. PerfMC is driven by an XML configuration file, and uses the Simple Network Management Protocol (SNMP) for data collection. SNMP is a standard protocol implemented by many networked equipments, so the tool can be used to monitor a wide range of devices. System administrators can display informations on the status of each device by connecting to a WEB server embedded in PerfMC. The WEB server can produce graphs showing the value of different monitored quantities as a function of time; it can also produce arbitrary XML pages by applying XSL Transformations to an internal XML representation of the cluster's status. XSL Transformations may be used to produce HTML pages which can be displayed by ordinary WEB browsers. PerfMC aims at being relatively easy to configure and operate, and highly efficient. It is currently being used to monitor the Italian Reprocessing farm for the BaBar experiment, which is made of about 200 dual-CPU Linux machines.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 10 pages, LaTeX, 4 eps figures. PSN MOET00

    A Grid architectural approach applied for backward compatibility to a production system for events simulation.

    Get PDF
    Distributed systems paradigm gained in popularity during the last 15 years, thanks also to the broad diffusion of distributed frameworks proposed for the Internet plat form. In the late ’90s a new concept started to play a main role in the field of distributed computing: the Grid. This thesis presents a study related to the integration between the BaBar’s framework, an experiment belonging to the High Energy Physics field, and a grid system like the one implemented by the Italian National Institute for Nuclear Physics (INFN), the INFNGrid project, which provides support for several research domains. The main goal was to succeed in adapt an already well established system, like the one implemented into the BaBar pipeline and based on local centers not interconnected between themselves, to a kind of technology that was not ready by the time the experiment’s framework was designed. Despite this new approach was related just to some aspects of the experiment, the production of simulated events by using MonteCarlo methods, the efforts here described represent an example of how an old experiment can bridge the gap toward the Grid computing, even adopting solutions designed for more recent projects. The complete evolution of this integration will be explained starting from the earlier stages until the actual development to state the progresses achieved, presenting results that are comparable with production rates gained using the conventional BaBar’s approach, in order to examine the potentially benefits and drawbacks on a concrete case study

    Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    Full text link
    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics

    Storage Infrastructure at the INFN LHC Tier-1

    Get PDF
    In this paper we will describe the Storage Infrastructure of the INFN-CNAF Tier-1, used to store data of High Energy Physics experiments, in particular those operating at the Large Hadron Collider

    Computing at SuperB

    Get PDF
    Domenico Del Prete*, Fabrizio Bianchi, Vania Boccia, Vincenzo Ciaschini, Marco Corvo, Guglielmo De Nardo, Andrea Di Simone, Giacinto Donvito, Armando Fella, Paolo Franchini, Francesco Giacomini, Alberto Gianoli, Giuliano Laccetti, Stefano Longo, Steffen Luitz, Eleonora Luppi, Matteo Manzali, Leonardo Merola, Silvio Pardi, Alejandro Perez, Matteo Rama, Guido Russo, Bruno Santeramo, Roberto Stroili, Luca Tommasett

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
    • …
    corecore