2,291 research outputs found

    Atlaspix3: A high voltage CMOS sensor chip designed for ATLAS Inner Tracker

    Get PDF
    ATLASpix3 is a 2 x 2 cm2^{2} high voltage CMOS sensor chip designed to meet the specifications of outer layers of ATLAS inner tracker. It is compatible with the hybrid pixel sensor ASIC RD53A in terms of electronic interface and geometry. ATLASpix3 is a depleted monolithic CMOS pixel detector which allows the construction of quad modules of the same size as that of hybrid sensors. The readout scheme can be externally configured as triggered or triggerless column drain readout. The hit information is transmitted through a 1.28 Gbit/s serial link. The interface is based on a single command input that is used for providing clock, trigger and configuration commands. This contribution summarizes the detector architecture with focus on the design of its readout circuitry. In addition, simulation results obtained using ReadOut Modelling Environment (ROME), that led to the design of the readout system are discussed

    An integrated DC-DC step-up charge pump and step-down converter in 130 nm technology

    Get PDF
    After the LHC luminosity upgrade the number of readout channels in the ATLAS Inner Detector will be increased by one order of magnitude and delivering the power to the front-end electronics as well as cooling will become a critical system issue. Therefore a new solution for powering the readout electronics has to be worked out. Two main approaches for the power distribution are under development, the serial powering of a chain of modules and the parallel powering with a DCDC conversion stage on the detector. In both cases switchedcapacitor converters in the CMOS front-end chips will be used. In the paper we present the design study of a step-up charge pump and a step-down converter. In optimized designs power efficiency of 85 % for the step-up converter and 92 % for the step-down converter has been achieved

    Photon Counting and Direct ToF Camera Prototype Based on CMOS SPADs

    Get PDF
    This paper presents a camera prototype for 2D/3D image capture in low illumination conditions based on single-photon avalanche-diode (SPAD) image sensor for direct time-offlight (d-ToF). The imager is a 64×64 array with in-pixel TDC for high frame rate acquisition. Circuit design techniques are combined to ensure successful 3D image capturing under low sensitivity conditions and high level of uncorrelated noise such as dark count and background illumination. Among them an innovative time gated front-end for the SPAD detector, a reverse start-stop scheme and real-time image reconstruction at Ikfps are incorporated by the imager. To the best of our knowledge, this is the first ToF camera based on a SPAD sensor fabricated and proved for 3D image reconstruction in a standard CMOS process without any opto-flavor or high voltage option. It has a depth resolution of 1cm at an illumination power from less than 6nW/mm 2 down to 0.1nW/mm 2 .Office of Naval Research (USA) N000141410355Ministerio de Economía y Competitividad TEC2015-66878-C3- 1-RJunta de Andalucía P12-TIC 233

    High Voltage and Nanoscale CMOS Integrated Circuits for Particle Physics and Quantum Computing

    Get PDF
    corecore