4,834 research outputs found

    Symmetric Submodular Function Minimization Under Hereditary Family Constraints

    Full text link
    We present an efficient algorithm to find non-empty minimizers of a symmetric submodular function over any family of sets closed under inclusion. This for example includes families defined by a cardinality constraint, a knapsack constraint, a matroid independence constraint, or any combination of such constraints. Our algorithm make O(n3)O(n^3) oracle calls to the submodular function where nn is the cardinality of the ground set. In contrast, the problem of minimizing a general submodular function under a cardinality constraint is known to be inapproximable within o(n/logn)o(\sqrt{n/\log n}) (Svitkina and Fleischer [2008]). The algorithm is similar to an algorithm of Nagamochi and Ibaraki [1998] to find all nontrivial inclusionwise minimal minimizers of a symmetric submodular function over a set of cardinality nn using O(n3)O(n^3) oracle calls. Their procedure in turn is based on Queyranne's algorithm [1998] to minimize a symmetric submodularComment: 13 pages, Submitted to SODA 201

    Planar Object Tracking in the Wild: A Benchmark

    Full text link
    Planar object tracking is an actively studied problem in vision-based robotic applications. While several benchmarks have been constructed for evaluating state-of-the-art algorithms, there is a lack of video sequences captured in the wild rather than in constrained laboratory environment. In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment. In particular, for each object, we shoot seven videos involving various challenging factors, namely scale change, rotation, perspective distortion, motion blur, occlusion, out-of-view, and unconstrained. The ground truth is carefully annotated semi-manually to ensure the quality. Moreover, eleven state-of-the-art algorithms are evaluated on the benchmark using two evaluation metrics, with detailed analysis provided for the evaluation results. We expect the proposed benchmark to benefit future studies on planar object tracking.Comment: Accepted by ICRA 201

    Submodular Minimization Under Congruency Constraints

    Full text link
    Submodular function minimization (SFM) is a fundamental and efficiently solvable problem class in combinatorial optimization with a multitude of applications in various fields. Surprisingly, there is only very little known about constraint types under which SFM remains efficiently solvable. The arguably most relevant non-trivial constraint class for which polynomial SFM algorithms are known are parity constraints, i.e., optimizing only over sets of odd (or even) cardinality. Parity constraints capture classical combinatorial optimization problems like the odd-cut problem, and they are a key tool in a recent technique to efficiently solve integer programs with a constraint matrix whose subdeterminants are bounded by two in absolute value. We show that efficient SFM is possible even for a significantly larger class than parity constraints, by introducing a new approach that combines techniques from Combinatorial Optimization, Combinatorics, and Number Theory. In particular, we can show that efficient SFM is possible over all sets (of any given lattice) of cardinality r mod m, as long as m is a constant prime power. This covers generalizations of the odd-cut problem with open complexity status, and with relevance in the context of integer programming with higher subdeterminants. To obtain our results, we establish a connection between the correctness of a natural algorithm, and the inexistence of set systems with specific combinatorial properties. We introduce a general technique to disprove the existence of such set systems, which allows for obtaining extensions of our results beyond the above-mentioned setting. These extensions settle two open questions raised by Geelen and Kapadia [Combinatorica, 2017] in the context of computing the girth and cogirth of certain types of binary matroids
    corecore