62 research outputs found

    Concurrent Probabilistic Simulation of High Temperature Composite Structural Response

    Get PDF
    A computational structural/material analysis and design tool which would meet industry's future demand for expedience and reduced cost is presented. This unique software 'GENOA' is dedicated to parallel and high speed analysis to perform probabilistic evaluation of high temperature composite response of aerospace systems. The development is based on detailed integration and modification of diverse fields of specialized analysis techniques and mathematical models to combine their latest innovative capabilities into a commercially viable software package. The technique is specifically designed to exploit the availability of processors to perform computationally intense probabilistic analysis assessing uncertainties in structural reliability analysis and composite micromechanics. The primary objectives which were achieved in performing the development were: (1) Utilization of the power of parallel processing and static/dynamic load balancing optimization to make the complex simulation of structure, material and processing of high temperature composite affordable; (2) Computational integration and synchronization of probabilistic mathematics, structural/material mechanics and parallel computing; (3) Implementation of an innovative multi-level domain decomposition technique to identify the inherent parallelism, and increasing convergence rates through high- and low-level processor assignment; (4) Creating the framework for Portable Paralleled architecture for the machine independent Multi Instruction Multi Data, (MIMD), Single Instruction Multi Data (SIMD), hybrid and distributed workstation type of computers; and (5) Market evaluation. The results of Phase-2 effort provides a good basis for continuation and warrants Phase-3 government, and industry partnership

    PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements

    Get PDF
    We present the capabilities and results of the Parallel Edge-based Tool for Geophysical Electromagnetic modeling (PETGEM), as well as the physical and numerical foundations upon which it has been developed. PETGEM is an open-source and distributed parallel Python code for fast and highly accurate modeling of 3D marine controlled-source electromagnetic (3D CSEM) problems. We employ the N\'ed\'elec Edge Finite Element Method (EFEM) which offers a good trade-off between accuracy and number of degrees of freedom, while naturally supporting unstructured tetrahedral meshes. We have particularised this new modeling tool to the 3D CSEM problem for infinitesimal point dipoles asumming arbitrarily isotropic media for low-frequencies approximations. In order to avoid source-singularities, PETGEM solves the frequency-domain Maxwell's equations of the secondary electric field, and the primary electric field is calculated analytically for homogeneous background media. We assess the PETGEM accuracy using classical tests with known analytical solutions as well as recent published data of real life geological scenarios. This assessment proves that this new modeling tool reproduces expected accurate solutions in the former tests, and its flexibility on realistic 3D electromagnetic problems. Furthermore, an automatic mesh adaptation strategy for a given frequency and specific source position is presented. We also include a scalability study based on fundamental metrics for high-performance computing (HPC) architectures.Comment: \c{opyright} 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This project has received funding from the EC-H2020 under the Marie Sklodowska-Curie grant agreement No. 644202, and from the EC-H2020 under the HPC4E Project, grant agreement No. 68977

    Frequency-Domain Modeling Techniques for the Scalar Wave Equation : An Introduction

    Get PDF
    Frequency-domain finite-difference (FDFD) modeling offers several advantages over traditional timedomain methods when simulating seismic wave propagation, including a convenient formulation within the context of wavefield inversion and a straight-forward extension for adding complex attenuation mechanisms. In this short paper we introduce the FDFD method, develop a simple solver for the scalar Helmholtz problem, and explore some possible approaches for solving large scale seismic modeling problems in the frequency domain.Massachusetts Institute of Technology. Earth Resources Laborator

    CSP plants with thermocline thermal energy storage and integrated steam generator – Techno-economic modeling and design optimization

    Get PDF
    Although CSP has reached technological maturity, high capital investment and specific electricity cost remain the major development barriers. To reduce them, highly efficient, integrated, and cheaper CSP components are urgently needed. In this paper, we investigate a novel CSP plant configuration with a single-tank Thermal Energy Storage (TES) fully integrated with the steam generator. The objective of this research is twofold: i) provide a reliable model of single-tank thermal storages with integrated steam generator; ii) identify two optimized CSP plant designs to achieve best energetic and economic performances. To achieve these aims we developed a numerical model of the main system components and validated it against experimental data. This model was then integrated in a full simulation and heuristic design optimization of the plant. The results revealed that the system proposed can generate electricity in middle-Italy (Rome) at a cost of 230.25 $/MWh with a 15% reduction compared to the double tank option. Furthermore, if cogeneration is used to recover the waste heat, this system is an interesting option for users such as small districts, university campuses and hospitals. In the latter case, the optimized system pays off in 6 years and covers 80% of the heating and cooling requirements

    DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling

    Get PDF
    Authors: Timo Koch and Dennis Gläser and Kilian Weishaupt and Sina Ackermann and Martin Beck and Beatrix Becker and Samuel Burbulla and Holger Class and Edward Coltman and Simon Emmert and Thomas Fetzer and Christoph Grüninger and Katharina Heck and Johannes Hommel and Theresa Kurz and Melanie Lipp and Farid Mohammadi and Samuel Scherrer and Martin Schneider and Gabriele Seitz and Leopold Stadler and Martin Utz and Felix Weinhardt and Bernd Flemisc

    Sur la conception de solveurs linéaires hybrides pour les architectures parallèles modernes

    Get PDF
    In the context of this thesis, our focus is on numerical linear algebra, more precisely on solution of large sparse systems of linear equations. We focus on designing efficient parallel implementations of MaPHyS, an hybrid linear solver based on domain decomposition techniques. First we investigate the MPI+threads approach. In MaPHyS, the first level of parallelism arises from the independent treatment of the various subdomains. The second level is exploited thanks to the use of multi-threaded dense and sparse linear algebra kernels involved at the subdomain level. Such an hybrid implementation of an hybrid linear solver suitably matches the hierarchical structure of modern supercomputers and enables a trade-off between the numerical and parallel performances of the solver. We demonstrate the flexibility of our parallel implementation on a set of test examples. Secondly, we follow a more disruptive approach where the algorithms are described as sets of tasks with data inter-dependencies that leads to a directed acyclic graph (DAG) representation. The tasks are handled by a runtime system. We illustrate how a first task-based parallel implementation can be obtained by composing task-based parallel libraries within MPI processes throught a preliminary prototype implementation of our hybrid solver. We then show how a task-based approach fully abstracting the hardware architecture can successfully exploit a wide range of modern hardware architectures. We implemented a full task-based Conjugate Gradient algorithm and showed that the proposed approach leads to very high performance on multi-GPU, multicore and heterogeneous architectures.Dans le contexte de cette thèse, nous nous focalisons sur des algorithmes pour l’algèbre linéaire numérique, plus précisément sur la résolution de grands systèmes linéaires creux. Nous mettons au point des méthodes de parallélisation pour le solveur linéaire hybride MaPHyS. Premièrement nous considerons l'aproche MPI+threads. Dans MaPHyS, le premier niveau de parallélisme consiste au traitement indépendant des sous-domaines. Le second niveau est exploité grâce à l’utilisation de noyaux multithreadés denses et creux au sein des sous-domaines. Une telle implémentation correspond bien à la structure hiérarchique des supercalculateurs modernes et permet un compromis entre les performances numériques et parallèles du solveur. Nous démontrons la flexibilité de notre implémentation parallèle sur un ensemble de cas tests. Deuxièmement nous considérons un approche plus innovante, où les algorithmes sont décrits comme des ensembles de tâches avec des inter-dépendances, i.e., un graphe de tâches orienté sans cycle (DAG). Nous illustrons d’abord comment une première parallélisation à base de tâches peut être obtenue en composant des librairies à base de tâches au sein des processus MPI illustrer par un prototype d’implémentation préliminaire de notre solveur hybride. Nous montrons ensuite comment une approche à base de tâches abstrayant entièrement le matériel peut exploiter avec succès une large gamme d’architectures matérielles. À cet effet, nous avons implanté une version à base de tâches de l’algorithme du Gradient Conjugué et nous montrons que l’approche proposée permet d’atteindre une très haute performance sur des architectures multi-GPU, multicoeur ainsi qu’hétérogène
    • …
    corecore