42,632 research outputs found

    Planning for the semiconductor manufacturer of the future

    Get PDF
    Texas Instruments (TI) is currently contracted by the Air Force Wright Laboratory and the Defense Advanced Research Projects Agency (DARPA) to develop the next generation flexible semiconductor wafer fabrication system called Microelectronics Manufacturing Science & Technology (MMST). Several revolutionary concepts are being pioneered on MMST, including the following: new single-wafer rapid thermal processes, in-situ sensors, cluster equipment, and advanced Computer Integrated Manufacturing (CIM) software. The objective of the project is to develop a manufacturing system capable of achieving an order of magnitude improvement in almost all aspects of wafer fabrication. TI was awarded the contract in Oct., 1988, and will complete development with a fabrication facility demonstration in April, 1993. An important part of MMST is development of the CIM environment responsible for coordinating all parts of the system. The CIM architecture being developed is based on a distributed object oriented framework made of several cooperating subsystems. The software subsystems include the following: process control for dynamic control of factory processes; modular processing system for controlling the processing equipment; generic equipment model which provides an interface between processing equipment and the rest of the factory; specification system which maintains factory documents and product specifications; simulator for modelling the factory for analysis purposes; scheduler for scheduling work on the factory floor; and the planner for planning and monitoring of orders within the factory. This paper first outlines the division of responsibility between the planner, scheduler, and simulator subsystems. It then describes the approach to incremental planning and the way in which uncertainty is modelled within the plan representation. Finally, current status and initial results are described

    An integrated computer-aided modular fixture design system for machining semi-circular parts

    Get PDF
    Productivity is one of the most important factors in manufacturing processes because of the high level of market competition. In this regard, modular fixtures (MFs) play an important role in practically improving productivity in flexible manufacturing systems (FMSs) due to this technology using highly productive computer numerical control (CNC) machines. MFs consist of devices called jigs and fixtures for accurately holding the workpiece during different machining operations. The design process is complex, and traditional methods of MF design were not sufficiently productive. Computer-aided design (CAD) software has rapidly improved as a result of the development of computer technology, and has provided huge opportunities for modular fixture designers to use its 3D modelling capabilities to develop more automated systems. Computer-aided fixture design (CAFD) systems have become automated by the use of artificial intelligence (AI) technology. This study will investigate the further improvement of automated CAFD systems by using AI tools. In this research, an integrated CAFD is developed by considering four main requirements: · a 3D model of the workpiece, · an expert system, · assembly automation of MFs, · an efficient feature library. The 3D model is an important factor that can provide the appropriate specification of the workpiece; SolidWorks is used the CAD environment for undertaking the 3D modelling in this study. The expert system is applied as a tool to make right decisions about the CAFD planning process, including locating and clamping methods and their related element selection. This helps achieve a feasible fixture design layout. SolidWorks API and Visual Basic programming language are employed for the automating and simulation of the assembly process of MFs. A feature library of modular fixture elements is constructed as a means to simplify the fixture design process

    Towards the integration of enterprise software: The business manufacturing intelligence

    Get PDF
    Nowadays, the Information Communication Technology has pervaded literally the companies. In the company circulates an huge amount of information but too much information doesn’t provide any added value. The overload of information exceeds individual processing capacity and slowdowns decision making operations. We must transform the enormous quantity of information in useful knowledge taking in consideration that information becomes obsolete quickly in condition of dynamic market. Companies process this information by specific software for managing, efficiently and effectively, the business processes. In this paper we analyse the myriad of acronyms of software that is used in enterprises with the changes that occurred over the time, from production to decision making until to convergence in an intelligent modular enterprise software, that we named Business Manufacturing Intelligence (BMI), that will manage and support the enterprise in the futurebusiness manufacturing intelligence, enterprise resource planning; business intelligence; management software; automation software; decision making software

    The influencing mechanism of manufacturing scene change on process domain knowledge reuse

    Get PDF
    It is necessary for a enterprise to reuse outside process domain knowledge to develop intelligent manufacturing technology. The key factors influencing knowledge reuse in digital manufacturing scene are manufacturing activities and PPR (Products, Processes and Resources) related to knowledge modeling, enterprise and integrated systems related to knowledge utilizing. How these factors influence knowledge modeling and utilizing is analyzed. Process domain knowledge reuse across the enterprises consists of knowledge reconfiguration and integrated application with CAx systems. The module-based knowledge model and loosely-coupled integration application of process domain knowledge are proposed. The aircraft sheet metal process domain knowledge reuse is taken as an example, and it shows that the knowledge reuse process can be made flexible and rapid

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Conclusions and implications of automation in space

    Get PDF
    Space facilities and programs are reviewed. Space program planning is discussed

    A review of modular strategies and architecture within manufacturing operations

    Get PDF
    This paper reviews existing modularity and modularization literature within manufacturing operations. Its purpose is to examine the tools, techniques, and concepts relating to modular production, to draw together key issues currently dominating the literature, to assess managerial implications associated with the emerging modular paradigm, and to present an agenda for future research directions. The review is based on journal papers included in the ABI/Inform electronic database and other noteworthy research published as part of significant research programmes. The research methodology concerns reviewing existing literature to identify key modular concepts, to determine modular developments, and to present a review of significant contributions to the field. The findings indicate that the modular paradigm is being adopted in a number of manufacturing organizations. As a result a range of conceptual tools, techniques, and frameworks has emerged and the field of modular enquiry is in the process of codifying the modular lexicon and developing appropriate modular strategies commensurate with the needs of manufacturers. Modular strategies and modular architecture were identified as two key issues currently dominating the modular landscape. Based on this review, the present authors suggest that future research areas need to focus on the development and subsequent standardization of interface protocols, cross-brand module use, supply chain power, transparency, and trust. This is the first review of the modular landscape and as such provides insights into, first, the development of modularization and, second, issues relating to designing modular products and modular supply chains

    The Factory of the Future

    Get PDF
    A brief history of aircraft production techniques is given. A flexible machining cell is then described. It is a computer controlled system capable of performing 4-axis machining part cleaning, dimensional inspection and materials handling functions in an unmanned environment. The cell was designed to: allow processing of similar and dissimilar parts in random order without disrupting production; allow serial (one-shipset-at-a-time) manufacturing; reduce work-in-process inventory; maximize machine utilization through remote set-up; maximize throughput and minimize labor
    • …
    corecore