136 research outputs found

    Computing GCRDs of Approximate Differential Polynomials

    Full text link
    Differential (Ore) type polynomials with approximate polynomial coefficients are introduced. These provide a useful representation of approximate differential operators with a strong algebraic structure, which has been used successfully in the exact, symbolic, setting. We then present an algorithm for the approximate Greatest Common Right Divisor (GCRD) of two approximate differential polynomials, which intuitively is the differential operator whose solutions are those common to the two inputs operators. More formally, given approximate differential polynomials ff and gg, we show how to find "nearby" polynomials f~\widetilde f and g~\widetilde g which have a non-trivial GCRD. Here "nearby" is under a suitably defined norm. The algorithm is a generalization of the SVD-based method of Corless et al. (1995) for the approximate GCD of regular polynomials. We work on an appropriately "linearized" differential Sylvester matrix, to which we apply a block SVD. The algorithm has been implemented in Maple and a demonstration of its robustness is presented.Comment: To appear, Workshop on Symbolic-Numeric Computing (SNC'14) July 201

    Fraction-free algorithm for the computation of diagonal forms matrices over Ore domains using Gr{\"o}bner bases

    Full text link
    This paper is a sequel to "Computing diagonal form and Jacobson normal form of a matrix using Groebner bases", J. of Symb. Computation, 46 (5), 2011. We present a new fraction-free algorithm for the computation of a diagonal form of a matrix over a certain non-commutative Euclidean domain over a computable field with the help of Gr\"obner bases. This algorithm is formulated in a general constructive framework of non-commutative Ore localizations of GG-algebras (OLGAs). We split the computation of a normal form of a matrix into the diagonalization and the normalization processes. Both of them can be made fraction-free. For a matrix MM over an OLGA we provide a diagonalization algorithm to compute U,VU,V and DD with fraction-free entries such that UMV=DUMV=D holds and DD is diagonal. The fraction-free approach gives us more information on the system of linear functional equations and its solutions, than the classical setup of an operator algebra with rational functions coefficients. In particular, one can handle distributional solutions together with, say, meromorphic ones. We investigate Ore localizations of common operator algebras over K[x]K[x] and use them in the unimodularity analysis of transformation matrices U,VU,V. In turn, this allows to lift the isomorphism of modules over an OLGA Euclidean domain to a polynomial subring of it. We discuss the relation of this lifting with the solutions of the original system of equations. Moreover, we prove some new results concerning normal forms of matrices over non-simple domains. Our implementation in the computer algebra system {\sc Singular:Plural} follows the fraction-free strategy and shows impressive performance, compared with methods which directly use fractions. Since we experience moderate swell of coefficients and obtain simple transformation matrices, the method we propose is well suited for solving nontrivial practical problems.Comment: 25 pages, to appear in Journal of Symbolic Computatio

    On the complexity of skew arithmetic

    No full text
    13 pagesIn this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed in terms of the cost of multiplication

    Finite Fields: Theory and Applications

    Get PDF
    Finite fields are the focal point of many interesting geometric, algorithmic and combinatorial problems. The workshop was devoted to progress on these questions, with an eye also on the important applications of finite field techniques in cryptography, error correcting codes, and random number generation

    Factorizations of Elements in Noncommutative Rings: A Survey

    Full text link
    We survey results on factorizations of non zero-divisors into atoms (irreducible elements) in noncommutative rings. The point of view in this survey is motivated by the commutative theory of non-unique factorizations. Topics covered include unique factorization up to order and similarity, 2-firs, and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and Jordan and generalizations thereof. We recall arithmetical invariants for the study of non-unique factorizations, and give transfer results for arithmetical invariants in matrix rings, rings of triangular matrices, and classical maximal orders as well as classical hereditary orders in central simple algebras over global fields.Comment: 50 pages, comments welcom

    Resultant-based Elimination in Ore Algebra

    Full text link
    We consider resultant-based methods for elimination of indeterminates of Ore polynomial systems in Ore algebra. We start with defining the concept of resultant for bivariate Ore polynomials then compute it by the Dieudonne determinant of the polynomial coefficients. Additionally, we apply noncommutative versions of evaluation and interpolation techniques to the computation process to improve the efficiency of the method. The implementation of the algorithms will be performed in Maple to evaluate the performance of the approaches.Comment: An updated (and shorter) version published in the SYNASC '21 proceedings (IEEE CS) with the title "Resultant-based Elimination for Skew Polynomials
    corecore