7 research outputs found

    A Modified Shuffled Frog Leaping Algorithm for PAPR Reduction in OFDM Systems

    Full text link
    © 2015 IEEE. Significant reduction of the peak-to-average power ratio (PAPR) is an implementation challenge in orthogonal frequency division multiplexing (OFDM) systems. One way to reduce PAPR is to apply a set of selected partial transmission sequence (PTS) to the transmit signals. However, PTS selection is a highly complex NP-hard problem and the computational complexity is very high when a large number of subcarriers are used in the OFDM system. In this paper, we propose a new heuristic PTS selection method, the modified chaos clonal shuffled frog leaping algorithm (MCCSFLA). MCCSFLA is inspired by natural clonal selection of a frog colony, it is based on the chaos theory. We also analyze MCCSFLA using the Markov chain theory and prove that the algorithm can converge to the global optimum. Simulation results show that the proposed algorithm achieves better PAPR reduction than using others genetic, quantum evolutionary and selective mapping algorithms. Furthermore, the proposed algorithm converges faster than the genetic and quantum evolutionary algorithms

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    Chicken Swarm Optimization for PTS based PAPR Reduction in OFDM Systems

    Get PDF
    Partial transmit sequence (PTS) is a well-known PAPR reduction scheme for the OFDM system. One of the major challenge of this scheme is to find an optimal phase vector using exhaustive search over all the allowed phase factor combinations. This leads to increased search complexity which grows exponentially as the number of sub-blocks is increased. In this paper, chicken swarm optimization (CSO) based PTS system is designed that aims to find an optimal solution in less number of average iterations and therefore results in reduced computational complexity of the system. We have proposed two categories of the algorithm: (i) CSO-PTS system without threshold limit on PAPR (ii) CSO-PTS system with threshold limit on PAPR. Both the schemes offer effective trade-offs between the computational complexity and the PAPR reduction capability of the system. Simulation results confirm that our proposed schemes perform well in terms of low computational complexity, lesser number of average iterations and improved PAPR reduction capability of the OFDM signal without any loss in BER performance of the system

    An investigation into the utilization of swarm intellingence for the control of the doubly fed induction generator under the influence of symmetrical and assymmetrical voltage dips.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The rapid depletion of fossil, fuels, increase in population, and birth of various industries has put a severe strain on conventional electrical power generation systems. It is because of this, that Wind Energy Conversion Systems has recently come under intense investigation. Among all topologies, the Doubly Fed Induction Generator is the preferred choice, owing to its direct grid connection, and variable speed nature. However, this connection has disadvantages. Wind turbines are generally placed in areas where the national grid is weak. In the case of asymmetrical voltage dips, which is a common occurrence near wind farms, the operation of the DFIG is negatively affected. Further, in the case of symmetrical voltage dips, as in the case of a three-phase short circuit, this direct grid connection poses a severe threat to the health and subsequent operation of the machine. Owing to these risks, there has been various approaches which are utilized to mitigate the effect of such occurrences. Considering asymmetrical voltage dips, symmetrical component theory allows for decomposition and subsequent elimination of negative sequence components. The proportional resonant controller, which introduces an infinite gain at synchronous frequency, is another viable option. When approached with the case of symmetrical voltage dips, the crowbar is an established method to expedite the rate of decay of the rotor current and dc link voltage. However, this requires the DFIG to be disconnected from the grid, which is against the rules of recently grid codes. To overcome such, the Linear Quadratic Regulator may be utilized. As evident, there has been various approaches to these issues. However, they all require obtaining of optimized gain values. Whilst these controllers work well, poor optimization of gain quantities may result in sub-optimal performance of the controllers. This work provides an investigation into the utilization of metaheuristic optimization techniques for these purposes. This research focuses on swarm-intelligence, which have proven to provide good results. Various swarm techniques from across the timeline spectrum, beginning from the well-known Particle Swarm Optimization, to the recently proposed African Vultures Optimization Algorithm, have been applied and analysed

    Optimization models for resource management in two-tier cellular networks

    Get PDF
    Macro-femtocell network is the most promising two-tier architecture for the cellular network operators because it can improve their current network capacity without additional costs. Nevertheless, the incorporation of femtocells to the existing cellular networks needs to be finely tuned in order to enhance the usage of the limited wireless resources, because the femtocells operate in the same spectrum as the macrocell. In this thesis, we address the resource optimization problem for the OFDMA two-tier networks for scenarios where femtocells are deployed using hybrid access policy. The hybrid access policy is a technique that could provide different levels of service to authorized users and visitors to the femtocell. This method reduces interference received by femtocell subscribers by granting access to nearby public users. These approaches should find a compromise between the level of access granted to public users and the impact on the subscribers satisfaction. This impact should be reduced in terms of performance or through economic compensation. In this work, two specific issues of an OFDMA two-tier cellular network are addressed. The first is the trade-off between macrocell resource usage efficiency and the fairness of the resource distribution among macro mobile users and femtocells. The second issue is the compromise between interference mitigation and granting access to public users without depriving the subscriber downlink transmissions. We tackle these issues by developing several resource allocation models for non-dense and dense femtocell deployment using Linear Programming and one evolutionary optimization method. In addition, the proposed resource allocation models determine the best suitable serving base station together with bandwidth and transmitted power per user in order to enhance the overall network capacity. The first two parts of this work cope with the resource optimization for non-dense deployment using orthogonal and co-channel allocation. Both parts aim at the maximization of the sum of the weighted user data rates. In the first part, several set of weights are introduced to prioritize the use of femtocells for subscribers and public users close to femtocells. In addition, macrocell power control is incorporated to enhance the power distribution among the active downlink transmissions and to improve the tolerance to the environmental noise. The second part enables the spectral reuse and the power adaptation is a three-folded solution that enhances the power distribution over the active downlink transmissions, improves the tolerance to the environmental noise and a given interference threshold, and achieves the target Quality of Service (QoS). To reduce the complexity of the resource optimization problem for dense deployment, the third part of this work divides the optimization problem into subproblems. The main idea is to divide the user and FC sets into disjoint sets taking into account their locations. Thus, the optimization problem can be solved independently in each OFDMA zone. This solution allows the subcarriers reuse among inner macrocell zones and femtocells located in outer macrocell zones and also between femtocells belonging to different clusters if they are located in the same zone. Macrocell power control is performed to avoid the cross-tier interference among macrocell inner zones and inside femtocells located in outer zones. Another well known method used to reduce the complexity of the resource optimization problem is the femtocell clustering. However, finding the optimal cluster configuration together with the resource allocation is a complex optimization problem due to variable number related to the possible cluster configurations. Therefore, the part four of this work deals with a heuristic cluster based resource allocation model and a motivation scheme for femtocell clustering through the allocation of extra resources for subscriber and “visitor user” transmissions. The cluster based resource allocation model maximizes the network throughput while keeping balanced clusters and minimizing the inter-cluster interference. Finally, the proposed solutions are evaluated through extensive numerical simulations and the numerical results are presented to provide a comparison with the related works found in the literature

    Optimization Methods Applied to Power Systems â…ˇ

    Get PDF
    Electrical power systems are complex networks that include a set of electrical components that allow distributing the electricity generated in the conventional and renewable power plants to distribution systems so it can be received by final consumers (businesses and homes). In practice, power system management requires solving different design, operation, and control problems. Bearing in mind that computers are used to solve these complex optimization problems, this book includes some recent contributions to this field that cover a large variety of problems. More specifically, the book includes contributions about topics such as controllers for the frequency response of microgrids, post-contingency overflow analysis, line overloads after line and generation contingences, power quality disturbances, earthing system touch voltages, security-constrained optimal power flow, voltage regulation planning, intermittent generation in power systems, location of partial discharge source in gas-insulated switchgear, electric vehicle charging stations, optimal power flow with photovoltaic generation, hydroelectric plant location selection, cold-thermal-electric integrated energy systems, high-efficiency resonant devices for microwave power generation, security-constrained unit commitment, and economic dispatch problems

    Research on key technologies in wireless communications based on evolutionary algorithms

    No full text
    Empirical thesis.Bibliography: pages 175-193.1. Introduction -- 2. Methodology and literature review -- 3. A modified shuffled frog leaping algorithm for PAPR reduction in OFDM systems -- 4.Target coverage based on QACEA for self-organizing WSN -- 5. Energy efficient duty cycle design based on QICEA in WSNs -- 6. Low energy clustering in high-density WSN based on FSEC -- 7. QoS routing based on parallel elite clonal quantum evolution for multimedia wireless sensor networks -- 8. Conclusions and future work.Wireless communications have been developing rapidly in both the research and industry. However, such developments have raised many challenges across various layers in wireless communications. In particular, many optimization processes have been proved to be NP-hard problems, which hinder further technological advances.Evolutionary Algorithm (EA), as part of the Artificial Intelligence, provides a generic heuristic optimization technique motivated by natural evolution. EAs usually work well in a category of combinatorial NP-hard problems by building better solutions through the recombination of the best part of past solutions, rather than attempting all possible combinations. As such EA is able to find near optimal solutions through solution generation, selection and rearrangement, reducing the complexity of solving NP-hard problems.Our research is motivated by the need to optimize difficult discrete optimization problems in wireless communication systems. In particular, we developed novel EA algorithms to address some of the NP-hard problems across various layers, ranging from Physical layer, Data Link layer, to Network layer, in wireless communication systems. We demonstrate that our EA designs achieve significant performance improvements for the systems under investigation with lower computational complexity and fast convergence.The main innovations and contributions of this thesis are as follows:In the Physical layer, we take on the challenge of the reduction of the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. We propose a modified chaos clonal shuffled frog leaping algorithm (MCCSFLA) for PAPR reduction. We also analyze MCCSFLA using Markov chain theory and prove that the proposed algorithm converges to the global optimum. Simulation results show that the proposed algorithm achieves better PAPR reduction than using others heuristics. Additionally, MCCSFLA has lower computational complexity and faster convergence than other heuristics.In the Data link layer, we investigate the target coverage problem in large-scale self-organizing wireless sensor networks (WSNs), we propose a method based on a quantum ant colony evolutionary algorithm. We build the WSNs target coverag esystem model, design and apply the proposed method to WSNs. Simulation results show that the proposed method can significantly increase the target coverage rate in WSNs. Furthermore, we expand our investigation to the communication coverage problem in WSNs. We propose a new quantum immune clonal evolutionary algorithm for the duty cycle sequence design with a full coverage constraint. Simulation results show that the proposed algorithm not only maintains full coverage of all the targets in the monitoring area but also extends the network lifetime of the WSN. Additionally, in order to reduce the communication energy consumption in large-scale WSNs, we propose a fuzzy simulated evolutionary computation clustering method. We design a fuzzy controller for the algorithm parameter adjustment. Simulation results show that the proposed method can significantly reduce the energy consumption of large-scale WSNs.In the Network layer, we take on the challenge of providing Quality of Service (QoS) routing for multimedia wireless sensor networks. A novel parallel elite clonal quantum evolutionary algorithm is proposed to solve the multi-constraints QoS routing problem. Simulation results demonstrate that the proposed algorithm achieves lower energy consumption at a faster convergence rate than the other heuristic algorithms.Wireless communication is a key technology in the modern society and we believe new evolutionary algorithms can contribute a growing number of solutions in this area.Mode of access: World wide web1 online resource (xxx, 193 pages) graph
    corecore