953 research outputs found

    Orthogonal learning particle swarm optimization

    Get PDF
    Particle swarm optimization (PSO) relies on its learning strategy to guide its search direction. Traditionally, each particle utilizes its historical best experience and its neighborhood’s best experience through linear summation. Such a learning strategy is easy to use, but is inefficient when searching in complex problem spaces. Hence, designing learning strategies that can utilize previous search information (experience) more efficiently has become one of the most salient and active PSO research topics. In this paper, we proposes an orthogonal learning (OL) strategy for PSO to discover more useful information that lies in the above two experiences via orthogonal experimental design. We name this PSO as orthogonal learning particle swarm optimization (OLPSO). The OL strategy can guide particles to fly in better directions by constructing a much promising and efficient exemplar. The OL strategy can be applied to PSO with any topological structure. In this paper, it is applied to both global and local versions of PSO, yielding the OLPSO-G and OLPSOL algorithms, respectively. This new learning strategy and the new algorithms are tested on a set of 16 benchmark functions, and are compared with other PSO algorithms and some state of the art evolutionary algorithms. The experimental results illustrate the effectiveness and efficiency of the proposed learning strategy and algorithms. The comparisons show that OLPSO significantly improves the performance of PSO, offering faster global convergence, higher solution quality, and stronger robustness

    A Hybrid PSO Based on Dynamic Clustering for Global Optimization

    Get PDF
    Particle swarm optimization is a population-based global search method, and known to suffer from premature convergence prior to discovering the true global minimizer for global optimization problems. Taking balance of local intensive exploitation and global exploration into account, a novel algorithm is presented in the paper, called dynamic clustering hybrid particle swarm optimization (DC-HPSO). In the method, particles are constantly and dynamically clustered into several groups (sub-swarms) corresponding to promising sub-regions in terms of similarity of their generalized particles. In each group, a dominant particle is chosen to take responsibility for local intensive exploitation, while the rest are responsible for exploration by maintaining diversity of the swarm. The simultaneous perturbation stochastic approximation (SPSA) is introduced into our work in order to guarantee the implementation of exploitation and the standard PSO is modified for exploration. The experimental results show the efficiency of the proposed algorithm in comparison with several other peer algorithms

    Formation coordination and network management of UAV networks using particle swarm optimization and software-defined networking

    Get PDF
    In recent years, with the growth in the use of Unmanned Aerial Vehicles (UAVs), UAV-based systems have become popular in both military and civil applications. The lack of reliable communication infrastructure in these scenarios has motivated the use of UAVs to establish a network as flying nodes, also known as UAV networks. However, the high mobility degree of flying and terrestrial users may be responsible for constant changes in nodes’ positioning, which makes it more challenging to guarantee their communication during the operational time. In this context, this work presents a framework solution for formation coordination and network management of UAVs, which aims to establish and maintain a set of relays units in order to provide a constant, reliable and efficient communication link among user nodes - which are performing individual or collaborative missions on its turn. Such a framework relies on a set of formation coordination algorithms - including the Particle Swarm Optimization (PSO) evolutionary algorithm -, and also considers the use of Software-defined Networking-based (SDN) communication protocol for network management. For coordination proposes, a novel particle selection criteria is proposed, which aims to guarantee network manageability of UAV formations, therefore being able to guarantee service persistence in case of nodes’ failure occurrence, as well as to provide required network performance, as a consequence. Simulations performed in OMNeT++ show the efficiency of the proposed solution and prove a promising direction of the solution for accomplishing its purposes.Em regiões de confrontos militares, em cenários pós-catástrofes naturais e, inclusive, em grandes áreas de cultivo agrícola, é comum a ausência de uma infra-estrutura préestabelecida de comunicação entre usuários durante a execução de uma ou mais operações eventuais. Nestes casos, Veículos Aéreos Não Tripulados (VANTs) podem ser vistos como uma alternativa para o estabelecimento de uma rede temporária durante essas missões. Para algumas aplicações, a alta mobilidade destes usuários podem trazem grandes desafios para o gerenciamento autônomo de uma estrutura de comunicação aérea, como a organização espacial dos nós roteadores e as políticas de encaminhamento de pacotes adotadas durante a operação. Tendo isso em vista, esse trabalho apresenta o estudo de uma solução que visa o estabelecimento e manutenção das conexões entre os usuários - nos quais executam tarefas individuais ou colaborativas -, através do uso de algoritmos de coordenação de formação - no qual inclui o algoritmo evolucionário Otimização por Enxame de Partículas -, e, também, de conceitos relacionados a Rede Definidas por Software para o gerenciamento da rede. Ainda, é proposto um novo critério de seleção das partículas do algoritmo evolucionário, visando garantir gerenciabilidade das topologias formadas e, consequentemente, a persistência do serviço em caso de falha dos nós roteadores, assim como o cumprimento de especificações desejadas para o desempenho da rede. Simulações em OMNeT++ mostraram a eficácia da proposta e sustentam o modelo proposto a fim de atingir seus objetivos

    Global Maximum Power Point Tracking of PV Array Under Non-Uniform Irradiation Condition Using Adaptive Velocity Particle Swarm Optimization

    Get PDF
    Non-uniform irradiation condition (NUIC) is a condition of differences irradiation level received by each Photovoltaic (PV) on PV array. NUIC of PV array causes the emergence of several power peaks (consisting of several local peaks and one global peak) in the power-voltage (P-V) characteristic curve. This condition can cause several algorithms (hill-climbing / P&O, IC) that are unable to reach the global peak as they are trapped at a local peak. This paper proposes an Adaptive Velocity Particle Swarm Optimization (AVPSO) algorithm to search the global peaks/Global Maximum Power Point (GMPP) of PV arrays under NUIC. The proposed algorithm is a modification of the PSO algorithm. AVPSO algorithm able to adjust its own weight factor values and cognitive acceleration coefficients depend on the distance of the particle's position now with the global best position during the tracking process. Adaptive weight factors can reduce the level of power or voltage oscillation during the tracking process until convergent, while the cognitive acceleration coefficient can prevent particles trapped at the local peak. Thus, the proposed AVPSO algorithm can reach GMPP with faster tracking time and low oscillation rates. In addition, this paper proposed an algorithm that can work both in static and dynamic NUIC patterns; thus, the proposed algorithm can track again when there is a change in global peak value in the PV array

    Particle swarm optimization for routing and wavelength assignment in next generation WDM networks.

    Get PDF
    PhDAll-optical Wave Division Multiplexed (WDM) networking is a promising technology for long-haul backbone and large metropolitan optical networks in order to meet the non-diminishing bandwidth demands of future applications and services. Examples could include archival and recovery of data to/from Storage Area Networks (i.e. for banks), High bandwidth medical imaging (for remote operations), High Definition (HD) digital broadcast and streaming over the Internet, distributed orchestrated computing, and peak-demand short-term connectivity for Access Network providers and wireless network operators for backhaul surges. One desirable feature is fast and automatic provisioning. Connection (lightpath) provisioning in optically switched networks requires both route computation and a single wavelength to be assigned for the lightpath. This is called Routing and Wavelength Assignment (RWA). RWA can be classified as static RWA and dynamic RWA. Static RWA is an NP-hard (non-polynomial time hard) optimisation task. Dynamic RWA is even more challenging as connection requests arrive dynamically, on-the-fly and have random connection holding times. Traditionally, global-optimum mathematical search schemes like integer linear programming and graph colouring are used to find an optimal solution for NP-hard problems. However such schemes become unusable for connection provisioning in a dynamic environment, due to the computational complexity and time required to undertake the search. To perform dynamic provisioning, different heuristic and stochastic techniques are used. Particle Swarm Optimisation (PSO) is a population-based global optimisation scheme that belongs to the class of evolutionary search algorithms and has successfully been used to solve many NP-hard optimisation problems in both static and dynamic environments. In this thesis, a novel PSO based scheme is proposed to solve the static RWA case, which can achieve optimal/near-optimal solution. In order to reduce the risk of premature convergence of the swarm and to avoid selecting local optima, a search scheme is proposed to solve the static RWA, based on the position of swarm‘s global best particle and personal best position of each particle. To solve dynamic RWA problem, a PSO based scheme is proposed which can provision a connection within a fraction of a second. This feature is crucial to provisioning services like bandwidth on demand connectivity. To improve the convergence speed of the swarm towards an optimal/near-optimal solution, a novel chaotic factor is introduced into the PSO algorithm, i.e. CPSO, which helps the swarm reach a relatively good solution in fewer iterations. Experimental results for PSO/CPSO based dynamic RWA algorithms show that the proposed schemes perform better compared to other evolutionary techniques like genetic algorithms, ant colony optimization. This is both in terms of quality of solution and computation time. The proposed schemes also show significant improvements in blocking probability performance compared to traditional dynamic RWA schemes like SP-FF and SP-MU algorithms

    Maximum power point tracking implementation by Dspace controller integrated through Z-Source inverter using particle swarm optimization technique for photovoltaic applications

    Get PDF
    Maximum Power Point Tracking (MPPT) technique is used to extract maximum power from the photovoltaic system. This paper involves working on an enhanced Particle Swarm Optimization (PSO) based MPPT method for the photovoltaic (PV) system integrated through Z-Source inverter. The main benefit of the proposed method is the diminishing of the steady-state oscillation when the maximum power point (MPP) is located. Additionally, during an extreme environmental condition, such as partial shading and large fluctuations of irradiance and temperature, the proposed method has the capability to track the MPP. This algorithm is implemented in dspace 1104 controller. MATLAB simulations are carried out under varying irradiance and temperature conditions to evaluate its effectiveness. Its performance is compared with a conventional method like Perturb and observe (P&O) method

    Swarm Intelligence In Myoelectric Control: Particle Swarm Based Dimensionality Reduction

    Full text link
    The myoelectric signals (MES) from human muscles have been utilized in many applications such as prosthesis control. The identification of various MES temporal structures is used to control the movement of prosthetic devices by utilizing a pattern recognition approach. Recent advances in this field have shown that there are a number of factors limiting the clinical availability of such systems. Several control strategies have been proposed but deficiencies still exist with most of those strategies especially with the Dimensionality Reduction (DR) part. This paper proposes using Particle Swarm Optimization (PSO) algorithm with the concept of Mutual Information (MI) to produce a novel hybrid feature selection algorithm. The new algorithm, called PSOMIFS, is utilized as a DR tool in myoelectric control problems. The PSOMIFS will be compared with other techniques to prove the effectiveness of the proposed method. Accurate results are acquired using only a small subset of the original feature set producing a classification accuracy of 99% across a problem of ten classes based on tests done on six subjects MES datasets
    corecore