14,228 research outputs found

    One-Cycle Zero-Integral-Error Current Control for Shunt Active Power Filters

    Get PDF
    [EN] Current control has, for decades, been one of the more challenging research fields in the development of power converters. Simple and robust nonlinear methods like hysteresis or sigma-delta controllers have been commonly used, while sophisticated linear controllers based on classical control theory have been developed for PWM-based converters. The one-cycle current control technique is a nonlinear technique based on cycle-by-cycle calculation of the ON time of the converter switches for the next switching period. This kind of controller requires accurate measurement of voltages and currents in order achieve a precise current tracking. These techniques have been frequently used in the control of power converters generating low-frequency currents, where the reference varies slowly compared with the switching frequency. Its application is not so common in active power filter current controllers due to the fast variation of the references that demands not only accurate measurements but also high-speed computing. This paper proposes a novel one-cycle digital current controller based on the minimization of the integral error of the current. Its application in a three-leg four-wire shunt active power filter is presented, including a stability analysis considering the switching pattern selection. Furthermore, simulated and experimental results are presented to validate the proposed controller.Orts-Grau, S.; Balaguer-Herrero, P.; Alfonso-Gil, JC.; Martínez-Márquez, CI.; Gimeno Sales, FJ.; Segui-Chilet, S. (2020). One-Cycle Zero-Integral-Error Current Control for Shunt Active Power Filters. Electronics. 9(12):1-16. https://doi.org/10.3390/electronics9122008S116912Orts-Grau, S., Gimeno-Sales, F. J., Abellan-Garcia, A., Segui-Chilet, S., & Alfonso-Gil, J. C. (2010). Improved Shunt Active Power Compensator for IEEE Standard 1459 Compliance. IEEE Transactions on Power Delivery, 25(4), 2692-2701. doi:10.1109/tpwrd.2010.2049033Orts-Grau, S., Gimeno-Sales, F. J., Segui-Chilet, S., Abellan-Garcia, A., Alcaniz-Fillol, M., & Masot-Peris, R. (2009). Selective Compensation in Four-Wire Electric Systems Based on a New Equivalent Conductance Approach. IEEE Transactions on Industrial Electronics, 56(8), 2862-2874. doi:10.1109/tie.2009.2014368Trinh, Q.-N., & Lee, H.-H. (2013). An Advanced Current Control Strategy for Three-Phase Shunt Active Power Filters. IEEE Transactions on Industrial Electronics, 60(12), 5400-5410. doi:10.1109/tie.2012.2229677Bosch, S., Staiger, J., & Steinhart, H. (2018). Predictive Current Control for an Active Power Filter With LCL-Filter. IEEE Transactions on Industrial Electronics, 65(6), 4943-4952. doi:10.1109/tie.2017.2772176Balasubramanian, R., Parkavikathirvelu, K., Sankaran, R., & Amirtharajan, R. (2019). Design, Simulation and Hardware Implementation of Shunt Hybrid Compensator Using Synchronous Rotating Reference Frame (SRRF)-Based Control Technique. Electronics, 8(1), 42. doi:10.3390/electronics8010042Imam, A. A., Sreerama Kumar, R., & Al-Turki, Y. A. (2020). Modeling and Simulation of a PI Controlled Shunt Active Power Filter for Power Quality Enhancement Based on P-Q Theory. Electronics, 9(4), 637. doi:10.3390/electronics9040637Panigrahi, R., Subudhi, B., & Panda, P. C. (2016). A Robust LQG Servo Control Strategy of Shunt-Active Power Filter for Power Quality Enhancement. IEEE Transactions on Power Electronics, 31(4), 2860-2869. doi:10.1109/tpel.2015.2456155Herman, L., Papic, I., & Blazic, B. (2014). A Proportional-Resonant Current Controller for Selective Harmonic Compensation in a Hybrid Active Power Filter. IEEE Transactions on Power Delivery, 29(5), 2055-2065. doi:10.1109/tpwrd.2014.2344770Panigrahi, R., & Subudhi, B. (2017). Performance Enhancement of Shunt Active Power Filter Using a Kalman Filter-Based H∞{{{\rm H}}_\infty } Control Strategy. IEEE Transactions on Power Electronics, 32(4), 2622-2630. doi:10.1109/tpel.2016.2572142Jiang, W., Ding, X., Ni, Y., Wang, J., Wang, L., & Ma, W. (2018). An Improved Deadbeat Control for a Three-Phase Three-Line Active Power Filter With Current-Tracking Error Compensation. IEEE Transactions on Power Electronics, 33(3), 2061-2072. doi:10.1109/tpel.2017.2693325Buso, S., Caldognetto, T., & Brandao, D. (2015). Dead-Beat Current Controller for Voltage Source Converters with Improved Large Signal Response. IEEE Transactions on Industry Applications, 1-1. doi:10.1109/tia.2015.2488644Tarisciotti, L., Formentini, A., Gaeta, A., Degano, M., Zanchetta, P., Rabbeni, R., & Pucci, M. (2017). Model Predictive Control for Shunt Active Filters With Fixed Switching Frequency. IEEE Transactions on Industry Applications, 53(1), 296-304. doi:10.1109/tia.2016.2606364Kumar, M., & Gupta, R. (2017). Sampled-Time-Domain Analysis of a Digitally Implemented Current Controlled Inverter. IEEE Transactions on Industrial Electronics, 64(1), 217-227. doi:10.1109/tie.2016.2609840Ho, C. N.-M., Cheung, V. S. P., & Chung, H. S.-H. (2009). Constant-Frequency Hysteresis Current Control of Grid-Connected VSI Without Bandwidth Control. IEEE Transactions on Power Electronics, 24(11), 2484-2495. doi:10.1109/tpel.2009.2031804Wu, F., Feng, F., Luo, L., Duan, J., & Sun, L. (2015). Sampling period online adjusting-based hysteresis current control without band with constant switching frequency. IEEE Transactions on Industrial Electronics, 62(1), 270-277. doi:10.1109/tie.2014.2326992Holmes, D. G., Davoodnezhad, R., & McGrath, B. P. (2013). An Improved Three-Phase Variable-Band Hysteresis Current Regulator. IEEE Transactions on Power Electronics, 28(1), 441-450. doi:10.1109/tpel.2012.2199133Komurcugil, H., Bayhan, S., & Abu-Rub, H. (2017). Variable- and Fixed-Switching-Frequency-Based HCC Methods for Grid-Connected VSI With Active Damping and Zero Steady-State Error. IEEE Transactions on Industrial Electronics, 64(9), 7009-7018. doi:10.1109/tie.2017.2686331Chang, C.-H., Wu, F.-Y., & Chen, Y.-M. (2012). Modularized Bidirectional Grid-Connected Inverter With Constant-Frequency Asynchronous Sigma–Delta Modulation. IEEE Transactions on Industrial Electronics, 59(11), 4088-4100. doi:10.1109/tie.2011.2176693Mertens, A. (1994). Performance analysis of three-phase inverters controlled by synchronous delta-modulation systems. IEEE Transactions on Industry Applications, 30(4), 1016-1027. doi:10.1109/28.297919Morales, J., de Vicuna, L. G., Guzman, R., Castilla, M., & Miret, J. (2018). Modeling and Sliding Mode Control for Three-Phase Active Power Filters Using the Vector Operation Technique. IEEE Transactions on Industrial Electronics, 65(9), 6828-6838. doi:10.1109/tie.2018.2795528Guzman, R., de Vicuna, L. G., Morales, J., Castilla, M., & Miret, J. (2016). Model-Based Control for a Three-Phase Shunt Active Power Filter. IEEE Transactions on Industrial Electronics, 63(7), 3998-4007. doi:10.1109/tie.2016.2540580Pichan, M., & Rastegar, H. (2017). Sliding-Mode Control of Four-Leg Inverter With Fixed Switching Frequency for Uninterruptible Power Supply Applications. IEEE Transactions on Industrial Electronics, 64(8), 6805-6814. doi:10.1109/tie.2017.2686346E. S., S., E. K., P., Chatterjee, K., & Bandyopadhyay, S. (2014). An Active Harmonic Filter Based on One-Cycle Control. IEEE Transactions on Industrial Electronics, 61(8), 3799-3809. doi:10.1109/tie.2013.2286558Wang, L., Han, X., Ren, C., Yang, Y., & Wang, P. (2018). A Modified One-Cycle-Control-Based Active Power Filter for Harmonic Compensation. IEEE Transactions on Industrial Electronics, 65(1), 738-748. doi:10.1109/tie.2017.2682021Jin, T., & Smedley, K. M. (2006). Operation of One-Cycle Controlled Three-Phase Active Power Filter With Unbalanced Source and Load. IEEE Transactions on Power Electronics, 21(5), 1403-1412. doi:10.1109/tpel.2006.880264Hirve, S., Chatterjee, K., Fernandes, B. G., Imayavaramban, M., & Dwari, S. (2007). PLL-Less Active Power Filter Based on One-Cycle Control for Compensating Unbalanced Loads in Three-Phase Four-Wire System. IEEE Transactions on Power Delivery, 22(4), 2457-2465. doi:10.1109/tpwrd.2007.893450Qiao, C., Smedley, K. M., & Maddaleno, F. (2004). A Single-Phase Active Power Filter With One-Cycle Control Under Unipolar Operation. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(8), 1623-1630. doi:10.1109/tcsi.2004.832801Qiao, C., Jin, T., & MaSmedley, K. (2004). One-Cycle Control of Three-Phase Active Power Filter With Vector Operation. IEEE Transactions on Industrial Electronics, 51(2), 455-463. doi:10.1109/tie.2004.82522

    Design and implementation of a modified fourier analysis harmonic current computation technique for power active filters using DSPs

    Get PDF
    The design and implementation of a harmonic current computation technique based on a modified Fourier analysis, suitable for active power filters incorporating DSPs is presented. The proposed technique is suitable for the monitoring and control of load current harmonics for real-time applications. The derivation of the basic equations based on the proposed technique and the system implementation using the Analogue Devices SHARC processor are presented. The steady state and dynamic performance of the system are evaluated for a range of loading conditions

    A new control technique for active power filters using a combined genetic algorithm/conventional analysis

    Get PDF
    In this paper, the computational problems associated with the optimization techniques used to evaluate the switching patterns for controlling variable-characteristics active power filters are presented and critically analyzed. Genetic algorithms (GAs) are introduced in this paper to generate a fast and accurate initial starting point in the highly nonlinear optimization space of mathematical optimization techniques. GAs tend to speed up the initialization process by a factor of 13. A combined GA/conventional technique is also proposed and implemented to reduce the associated computational burden associated with the control and, consequently, increasing the speed of response of this class of active filters. Comparisons of these techniques are discussed and presented in conjunction with simulation and practical results for the filter operation

    Suppression of Second-Order Harmonic Current for Droop-Controlled Distributed Energy Resource Converters in DC Microgrids

    Get PDF
    Droop-controlled distributed energy resource converters in dc microgrids usually show low output impedances. When coupled with ac systems, second-order harmonics typically appear on the dc-bus voltage, causing significant harmonic currents at the converters resource side. This paper shows how to reduce such undesired currents by means of notch filters and resonant regulators included in the converters control loops. The main characteristics of these techniques in terms of harmonic attenuation and stability are systematically investigated. In particular, it is shown that the voltage control-loop bandwidth is limited to be below twice the line frequency to avoid instability. Then, a modified notch filter and a modified resonant regulator are proposed, allowing to remove the constraint on the voltage loop bandwidth. The resulting methods (i.e., the notch filter, the resonant regulator, and their corresponding modified versions) are evaluated in terms of output impedance and stability. Experimental results from a dc microgrid prototype composed of three dc-dc converters and one dc-ac converter, all with a rated power of 5kW, are reported

    Hybrid HVDC for supply of power to offshore oil platforms

    Get PDF
    A HVDC hybrid system, comprising a line commutated thyristor HVDC converter and a STATCOM, is proposed in this paper for supplying power to offshore oil platforms that do not have their own generation. The proposed system combines the robust performance, low capital cost and low power loss of a line commutated HVDC converter, with the fast dynamic performance of an equivalent VSC Transmission system. The paper describes the principles and control strategies of the proposed system. PSCAD/EMTDC simulations are presented to demonstrate the robust performance of the system using case studies of various operating conditions such as black-start, load perturbations, AC fault conditions and disturbance caused by the starting of large local induction machines

    A Solid State Transformer model for power flow calculations

    Get PDF
    This paper presents the implementation of a Solid State Transformer (SST) model in OpenDSS. The goal is to develop a SST model that could be useful for assessing the impact that the replacement of the conventional iron-and-copper transformer with the SST can have on the distribution system performance. Test distribution systems of different characteristics and size have been simulated during different time periods. The simulations have been carried out assuming voltage-dependent loads and considering that power flow through either the HV/MV substation transformer or any of the MV/LV distribution transformers can be bidirectional. Simulation results prove that a positive impact should be expected on voltages at both MV and LV levels, but the efficiency of current SST designs should be improved.Postprint (author's final draft

    Compensation of Distribution System Voltage using DVR

    Get PDF
    A dynamic voltage restorer (DVR) is a power-electronic controller that can protect sensitive loads from disturbances in the supply system. In this paper, it is demonstrated that this device can tightly regulate the voltage at the load terminal against imbalance or harmonic in the source side. The behavior of the device is studied through steady-state analysis, and limits to achievable performance are found. This analysis is extended to the study of transient operation where the generation of the reference voltage of the DVR is discussed. Once the reference signals are generated, they are tracked using a switching band scheme. A suitable structure in which the DVR is realized by voltage-source inverters (VSIs) is also discussed. Particular emphasis to the rating of this device is provided. Extensive simulation results are included to illustrate the operating principles of a DVR

    Hysteretic control of grid-side current for a single-phase LCL grid-connected voltage source converter

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper proposes a new approach to control the grid-side current of LCL-grid connected voltage source converters using hysteretic relay feedback controllers. The closed loop system is stabilized by designing a local feedback around the relay element. The compensator allows the use of relay feedback controllers by making the controlled plant almost strictly positive real. The article proposes the use of the locus of the perturbed relay system as analysis and design tool and studies orbital stability for several plant and controller conditions. The approach is validated by means of simulation testing.Postprint (author's final draft

    A novel three-phase multilevel AC-DC converter operating as a shunt active power filter: Validation considering an industrial environment

    Get PDF
    Power quality problems are an issue that requires, each more, particular attention, among others, to prevent equipment failure and improve efficiency. In this context, this paper presents a novel three-phase four-wire multilevel AC-DC converter operating as a shunt active power filter aiming to reduce the current harmonic distortion, low power factor, and current unbalances, which are introduced by the non-linear loads. The proposed topology comprises a total of six full bridges, where every two full bridges are arranged in a cascade structure and connected to one of the phases of the power grid. Both the proposed topology, as well as the applied control algorithm, are validated using computer simulations considering the most relevant conditions of operation in an industrial environment. The obtained results validate the proposed three-phase multilevel converter when operating as a shunt active power filter, showing that the power quality problems presented in the currents are compensated and the converter operates with the multilevel characteristic for all the conditions of operation
    • 

    corecore