236 research outputs found

    Spatial Condition in Intuitionistic Fuzzy C-Means Clustering for Segmentation of Teeth in Dental Panoramic Radiographs

    Get PDF
     Dental panoramic radiographs heavily depend on the performance of the segmentation method due to the presence of unevenly illumination and low contrast of the images. Conditional Spatial Fuzzy C-mean (csFCM) Clustering have been proposed to achieve through the incorporation of the component and added in the FCM to cluster grouping. This algorithm directs with consideration conditioning variables that consider membership value. However, csFCM does not consider Intuitionistic Fuzzy Set to take final membership and final non-membership value into account, the effect does not wipe off the deviation by illumination and low contrast of the images completely for improvement to skip some scope. In this current paper, we introduced a new image segmentation method namely Conditional Spatial in Intuitionistic Fuzzy C-Means Clustering for Segmentation of Teeth in Dental Panoramic Radiographs. Our proposed method adds hesitation function aiming to settle the indication of the knowledge lack that belongs to the final membership function to get a better segmentation result. The experiment result shows this method achieves better segmentation performance with misclassification error (ME) and relative foreground area error (RAE) values are 4.77 and 4.27 respectively

    Efficiency Analysis of Hybrid Fuzzy C-Means Clustering Algorithms and their Application to Compute the Severity of Disease in Plant Leaves

    Get PDF
    Data clustering has a wide range of application varying from medical image analysis, social network analysis, market segmentation, search engines, recommender systems and image processing. A clustering algorithm should be fast as well accurate. Some applications give priority to the speed of the clustering algorithms while some emphasize more on the accuracy rather than speed. A number of clustering algorithms have been proposed in the literature. Some of these include Fuzzy C-Means (FCM), Intuitionistic Fuzzy C-Means (IFCM), Rough Fuzzy C-Means (RFCM) and Rough Intuitionistic Fuzzy C-Means (RIFCM). In this paper, we compare the accuracy and execution time of the fuzzy based clustering algorithms. The clustering algorithms are applied on an image dataset and their running time as well as accuracy is compared by varying the number of clusters. Our results show that there is a clear trade-off between execution time and accuracy of these clustering algorithms. Also, we apply these algorithms on two different diseased leaf images and compute the severity of the disease of the leaves

    Automatic leukocyte nucleus segmentation by intuitionistic fuzzy divergence based thresholding

    Get PDF
    The paper proposes a robust approach to automatic segmentation of leukocyte‟s nucleus from microscopic blood smear images under normal as well as noisy environment by employing a new exponential intuitionistic fuzzy divergence based thresholding technique. The algorithm minimizes the divergence between the actual image and the ideally thresholded image to search for the final threshold. A new divergence formula based on exponential intuitionistic fuzzy entropy has been proposed. Further, to increase its noise handling capacity, a neighborhood-based membership function for the image pixels has been designed. The proposed scheme has been applied on 110 normal and 54 leukemia (chronic myelogenous leukemia) affected blood samples. The nucleus segmentation results have been validated by three expert haematologists. The algorithm achieves an average segmentation accuracy of 98.52% in noise-free environment. It beats the competitor algorithms in terms of several other metrics. The proposed scheme with neighborhood based membership function outperforms the competitor algorithms in terms of segmentation accuracy under noisy environment. It achieves 93.90% and 94.93% accuracies for Speckle and Gaussian noises respectively. The average area under the ROC curves comes out to be 0.9514 in noisy conditions, which proves the robustness of the proposed algorithm

    Informational Paradigm, management of uncertainty and theoretical formalisms in the clustering framework: A review

    Get PDF
    Fifty years have gone by since the publication of the first paper on clustering based on fuzzy sets theory. In 1965, L.A. Zadeh had published “Fuzzy Sets” [335]. After only one year, the first effects of this seminal paper began to emerge, with the pioneering paper on clustering by Bellman, Kalaba, Zadeh [33], in which they proposed a prototypal of clustering algorithm based on the fuzzy sets theory

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    CO2 emission based GDP prediction using intuitionistic fuzzy transfer learning

    Get PDF
    The industrialization has been the primary cause of the economic boom in almost all countries. However, this happened at the cost of the environment, as industrialization also caused carbon emissions to increase exponentially. According to the established literature, Gross Domestic Product (GDP) is related to carbon emissions (CO2) which could be optimally employed to precisely estimate a country's GDP. However, the scarcity of data is a significant bottleneck that could be handled using transfer learning (TL) which uses previously learned information to resolve new tasks, more specifically, related tasks. Notably, TL is highly vulnerable to performance degradation due to the deficiency of suitable information and hesitancy in decision-making. Therefore, this paper proposes ‘Intuitionistic Fuzzy Transfer Learning (IFTL)’, which is trained to use CO2 emission data of developed nations and is tested for its prediction of GDP in a developing nation. IFTL exploits the concepts of intuitionistic fuzzy sets (IFSs) and a newly introduced function called the modified Hausdorff distance function. The proposed IFTL is investigated to demonstrate its actual capabilities for TL in modeling hesitancy. To further emphasize the role of hesitancy modelled with IFSs, we propose an ordinary fuzzy set (FS) based transfer learning. The prediction accuracy of the IFTL is further compared with widely used machine learning approaches, extreme learning machines, support vector regression, and generalized regression neural networks. It is observed that IFTL capably ensured significant improvements in the prediction accuracy over other existing approaches whenever training and testing data have huge data distribution differences. Moreover, the proposed IFTL is deterministic in nature and presents a novel way for mathematically computing the intuitionistic hesitation degree.© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Fuzzy Logic based Edge Detection Method for Image Processing

    Get PDF
    Edge detection is the first step in image recognition systems in a digital image processing. An effective way to resolve many information from an image such depth, curves and its surface is by analyzing its edges, because that can elucidate these characteristic when color, texture, shade or light changes slightly. Thiscan lead to misconception image or vision as it based on faulty method. This work presentsa new fuzzy logic method with an implemention. The objective of this method is to improve the edge detection task. The results are comparable to similar techniques in particular for medical images because it does not take the uncertain part into its account

    Spatial fuzzy c-mean sobel algorithm with grey wolf optimizer for MRI brain image segmentation

    Get PDF
    Segmentation is the process of dividing the original image into multiple sub regions called segments in such a way that there is no intersection between any two regions. In medical images, the segmentation is hard to obtain due to the intensity similarity among various regions and the presence of noise in medical images. One of the most popular segmentation algorithms is Spatial Fuzzy C-means (SFCM). Although this algorithm has a good performance in medical images, it suffers from two issues. The first problem is lack of a proper strategy for point initialization step, which must be performed either randomly or manually by human. The second problem of SFCM is having inaccurate segmented edges. The goal of this research is to propose a robust medical image segmentation algorithm that overcomes these weaknesses of SFCM for segmenting magnetic resonance imaging (MRI) brain images with less human intervention. First, in order to find the optimum initial points, a histogram based algorithm in conjunction with Grey Wolf Optimizer (H-GWO) is proposed. The proposed H-GWO algorithm finds the approximate initial point values by the proposed histogram based method and then by taking advantage of GWO, which is a soft computing method, the optimum initial values are found. Second, in order to enhance SFCM segmentation process and achieve higher accurate segmented edges, an edge detection algorithm called Sobel was utilized. Therefore, the proposed hybrid SFCM-Sobel algorithm first finds the edges of the original image by Sobel edge detector algorithm and finally extends the edges of SFCM segmented images to the edges that are detected by Sobel. In order to have a robust segmentation algorithm with less human intervention, the H-GWO and SFCM-Sobel segmentation algorithms are integrated to have a semi-automatic robust segmentation algorithm. The results of the proposed H-GWO algorithms show that optimum initial points are achieved and the segmented images of the SFCM-Sobel algorithm have more accurate edges as compared to recent algorithms. Overall, quantitative analysis indicates that better segmentation accuracy is obtained. Therefore, this algorithm can be utilized to capture more accurate segmented in images in the era of medical imaging
    corecore