2,232 research outputs found

    Text Detection Using Transformation Scaling Extension Algorithm in Natural Scene Images

    Get PDF
    In recent study efforts, the importance of text identification and recognition in images of natural scenes has been stressed more and more. Natural scene text contains an enormous amount of useful semantic data that can be applied in a variety of vision-related applications. The detection of shape-robust text confronts two major challenges: 1. A large number of traditional quadrangular bounding box-based detectors failed to identify text with irregular forms, making it difficult to include such text within perfect rectangles.2. Pixel-wise segmentation-based detectors sometimes struggle to identify closely positioned text examples from one another. Understanding the surroundings and extracting information from images of natural scenes depends heavily on the ability to detect and recognise text. Scene text can be aligned in a variety of ways, including vertical, curved, random, and horizontal alignments. This paper has created a novel method, the Transformation Scaling Extention Algorithm (TSEA), for text detection using a mask-scoring R-ConvNN (Region Convolutional Neural Network). This method works exceptionally well at accurately identifying text that is curved and text that has multiple orientations inside real-world input images. This study incorporates a mask-scoring R-ConvNN network framework to enhance the model's ability to score masks correctly for the observed occurrences. By providing more weight to accurate mask predictions, our scoring system eliminates inconsistencies between mask quality and score and enhances the effectiveness of instance segmentation. This paper also incorporates a Pyramid-based Text Proposal Network (PBTPN) and a Transformation Component Network (TCN) to enhance the feature extraction capabilities of the mask-scoring R-ConvNN for text identification and segmentation with the TSEA. Studies show that Pyramid Networks are especially effective in reducing false alarms caused by images with backgrounds that mimic text. On benchmark datasets ICDAR 2015, SCUT-CTW1500 containing multi-oriented and curved text, this method outperforms existing methods by conducting extensive testing across several scales and utilizing a single model. This study expands the field of vision-oriented applications by highlighting the growing significance of effectively locating and detecting text in natural situations

    Securing the Biometric through ECG using Machine Learning Techniques

    Get PDF
    In the current era, biometrics is widely used for maintaining the security. To extract the information from the biomedical signals, biomedical signal processing is needed. One of the significant tools used for the diagnostic is electrocardiogram (ECG). The main reason behind this is the certain uniqueness in the ECG signals of the individual.  In this paper, the focus will be on distinguishing the individual on the basis of ECG signals using feature extraction approaches and the machine learning algorithms. Other than preprocessing approach, the discrete cosine transform is applied to perform the extraction. The classification between the signals of the individuals is carried out using the Support Vector Machine and K-Nearest Neighbor machine learning techniques.  The classification accuracy achieved through SVM is 87% and K-NN has achieved a classification accuracy of 96.6% with k=3. The work has shown how machine learning can be used to classify the ECG signal

    Harnessing Deep Learning Techniques for Text Clustering and Document Categorization

    Get PDF
    This research paper delves into the realm of deep text clustering algorithms with the aim of enhancing the accuracy of document classification. In recent years, the fusion of deep learning techniques and text clustering has shown promise in extracting meaningful patterns and representations from textual data. This paper provides an in-depth exploration of various deep text clustering methodologies, assessing their efficacy in improving document classification accuracy. Delving into the core of deep text clustering, the paper investigates various feature representation techniques, ranging from conventional word embeddings to contextual embeddings furnished by BERT and GPT models.By critically reviewing and comparing these algorithms, we shed light on their strengths, limitations, and potential applications. Through this comprehensive study, we offer insights into the evolving landscape of document analysis and classification, driven by the power of deep text clustering algorithms.Through an original synthesis of existing literature, this research serves as a beacon for researchers and practitioners in harnessing the prowess of deep learning to enhance the accuracy of document classification endeavors

    DANet: Enhancing Small Object Detection through an Efficient Deformable Attention Network

    Full text link
    Efficient and accurate detection of small objects in manufacturing settings, such as defects and cracks, is crucial for ensuring product quality and safety. To address this issue, we proposed a comprehensive strategy by synergizing Faster R-CNN with cutting-edge methods. By combining Faster R-CNN with Feature Pyramid Network, we enable the model to efficiently handle multi-scale features intrinsic to manufacturing environments. Additionally, Deformable Net is used that contorts and conforms to the geometric variations of defects, bringing precision in detecting even the minuscule and complex features. Then, we incorporated an attention mechanism called Convolutional Block Attention Module in each block of our base ResNet50 network to selectively emphasize informative features and suppress less useful ones. After that we incorporated RoI Align, replacing RoI Pooling for finer region-of-interest alignment and finally the integration of Focal Loss effectively handles class imbalance, crucial for rare defect occurrences. The rigorous evaluation of our model on both the NEU-DET and Pascal VOC datasets underscores its robust performance and generalization capabilities. On the NEU-DET dataset, our model exhibited a profound understanding of steel defects, achieving state-of-the-art accuracy in identifying various defects. Simultaneously, when evaluated on the Pascal VOC dataset, our model showcases its ability to detect objects across a wide spectrum of categories within complex and small scenes.Comment: ICCD-2

    Dual method cryptography image by two force secure and steganography secret message in IoT

    Get PDF
    With the go on the evolution of both computer and internet technology, videos, sounds, and scripts are used more and more often. It can be used in sundry techniques in ciphering and data concealing. The objective of this paper is leading to the suggestion of a new method of the combination between encryption and concealment of information so as to make it difficult to identify the transmitted datavia networks. This study has used two force secure (2FS) to encrypt the images, in other words, the SF is frequent twice on the image, to obtain powerful encryption then the concealing of the secret message is done inside the cryptography of the image has been performed using a secret key (cosine curve), and this stego-encryption image has been transformed forthe Internet of things storage in the database in IoT (data flow), when the user needs any information can be access inviaof internet of things (IoTs). The outcome of the proposed system is obtained tobe evaluated through different measures, such aspeak signal noise ratio (PSNR), mean square error (MSE), entropy,correlation coefficient, and histogram. The proposed system is good, efficient, fast, has high security, robustness, and transparency

    An Event Based Digital Forensic Scheme for Vehicular Networks

    Get PDF
    The software in today's cars has become increasingly important in recent years. The development of high-tech driver assistance devices has helped fuel this movement. This tendency is anticipated to accelerate with the advent of completely autonomous vehicles. As more modern vehicles incorporate software and security-based solutions, "Event-Based digital forensics," the analysis of digital evidence of accidents and warranty claims, has become increasingly significant. The objective of this study is to ascertain, in a realistic setting, whether or not digital forensics can be successfully applied to a state-of-the-art automobile. We did this by dissecting the procedure of automotive forensics, which is used on in-car systems to track the mysterious activity by means of digital evidence. We did this by applying established methods of digital forensics to a state-of-the-art car.Our research employs specialized cameras installed in the study areas and a log of system activity that may be utilized as future digital proof to examine the effectiveness of security checkpoints and other similar technologies. The goal is to keep an eye on the vehicles entering the checkpoint, look into them if there is any reason to suspect anything, and then take the appropriate measures. The problem with analyzing this data is that it is becoming increasingly complex and time-consuming as the amount of data that has been collected keeps growing. In this paper, we outline a high-level methodology for automotive forensics to fill in the blanks, and we put it through its paces on a network simulator in a state-of-the-art vehicle to simulate a scenario in which devices are tampered with while the car is in motion. Here, we test how well the strategy functions. Diagnostics over IP (Diagnostics over IP), on-board diagnostics interface, and unified diagnostic services are all used during implementation. To work, our solution requires vehicles to be able to exchange diagnostic information wirelessly.These results show that it is possible to undertake automotive forensic analysis on state-of-the-art vehicles without using intrusion detection systems or event data recorders, and they lead the way towards a more fruitful future for automotive forensics. The results also show that modern autos are amenable to forensic automotive analysis

    Deep learning analysis of plasma emissions: A potential system for monitoring methane and hydrogen in the pyrolysis processes

    Get PDF
    The estimation of methane and hydrogen production as output from a pyrolysis reaction is paramount to monitor the process and optimize its parameters. In this study, we propose a novel experimental approach for monitoring methane pyrolysis reactions aimed at hydrogen production by quantifying methane and hydrogen output from the system. While we appreciate the complexity of molecular outputs from methane hydrolysis process, our primary approach is a simplified model considering detection of hydrogen and methane only which involves three steps: continuous gas sampling, feeding of the sample into an argon plasma, and employing deep learning model to estimate of the methane and hydrogen concentration from the plasma spectral emission. While our model exhibits promising performance, there is still significant room for improvement in accuracy, especially regarding hydrogen quantification in the presence of methane and other hydrogen bearing molecules. These findings present exciting prospects, and we will discuss future steps necessary to advance this concept, which is currently in its early stages of development

    Multiclass Classification of Brain MRI through DWT and GLCM Feature Extraction with Various Machine Learning Algorithms

    Get PDF
    This study delves into the domain of medical diagnostics, focusing on the crucial task of accurately classifying brain tumors to facilitate informed clinical decisions and optimize patient outcomes. Employing a diverse ensemble of machine learning algorithms, the paper addresses the challenge of multiclass brain tumor classification. The investigation centers around the utilization of two distinct datasets: the Brats dataset, encompassing cases of High-Grade Glioma (HGG) and Low-Grade Glioma (LGG), and the Sartaj dataset, comprising instances of Glioma, Meningioma, and No Tumor. Through the strategic deployment of Discrete Wavelet Transform (DWT) and Gray-Level Co-occurrence Matrix (GLCM) features, coupled with the implementation of Support Vector Machines (SVM), k-nearest Neighbors (KNN), Decision Trees (DT), Random Forest, and Gradient Boosting algorithms, the research endeavors to comprehensively explore avenues for achieving precise tumor classification. Preceding the classification process, the datasets undergo pre-processing and the extraction of salient features through DWT-derived frequency-domain characteristics and texture insights harnessed from GLCM. Subsequently, a detailed exposition of the selected algorithms is provided and elucidates the pertinent hyperparameters. The study's outcomes unveil noteworthy performance disparities across diverse algorithms and datasets. SVM and Random Forest algorithms exhibit commendable accuracy rates on the Brats dataset, while the Gradient Boosting algorithm demonstrates superior performance on the Sartaj dataset. The evaluation process encompasses precision, recall, and F1-score metrics, thereby providing a comprehensive assessment of the classification prowess of the employed algorithms

    Recognition and Evaluation of Heart Arrhythmias via a General Sparse Neural Network

    Get PDF
    In clinical use, an electrocardiogram (ECG) is an essential medical tool for assessing heart arrhythmias. Thousands of human beings worldwide are affected by different cardiac problems nowadays. As a consequence, studying the features of the ECG pattern is critical for detecting a wide range of cardiac diseases. The ECG is a test which assesses the intensity of the electrical impulses in the circulatory system. In the present investigation, detection and examination of arrhythmias in the heart on the  system using GSNNs (General sparsed neural network classifier) can be carried out[1]. In this paper, the methodologies of support vector regression(SVR), neural mode decomposition(NMD), Artificial Neural Network (ANN), Support Vector Machine(SVM) and are examined. To assess the suggested structure, three distinct ECG waveform situations are chosen from the MIT-BIH arrhythmia collection. The main objective of this assignment is to create a simple, accurate, and simply adaptable approach for classifying the three distinct heart diseases chosen. The wavelet transform Db4 is used in the present paper to obtain several features from an ECG signal. The suggested setup was created using the MATLAB programme. The algorithms suggested are 98% accurate for forecasting cardiac arrhythmias, which is greater than prior techniques

    Machine Learning Techniques to Evaluate the Approximation of Utilization Power in Circuits

    Get PDF
    The need for products that are more streamlined, more useful, and have longer battery lives is rising in today's culture. More components are being integrated onto smaller, more complex chips in order to do this. The outcome is higher total power consumption as a result of increased power dissipation brought on by dynamic and static currents in integrated circuits (ICs). For effective power planning and the precise application of power pads and strips by floor plan engineers, estimating power dissipation at an early stage is essential. With more information about the design attributes, power estimation accuracy increases. For a variety of applications, including function approximation, regularization, noisy interpolation, classification, and density estimation, they offer a coherent framework. RBFNN training is also quicker than training multi-layer perceptron networks. RBFNN learning typically comprises of a linear supervised phase for computing weights, followed by an unsupervised phase for determining the centers and widths of the Gaussian basis functions. This study investigates several learning techniques for estimating the synaptic weights, widths, and centers of RBFNNs. In this study, RBF networks—a traditional family of supervised learning algorithms—are examined.  Using centers found using k-means clustering and the square norm of the network coefficients, respectively, two popular regularization techniques are examined. It is demonstrated that each of these RBF techniques are capable of being rewritten as data-dependent kernels. Due to their adaptability and quicker training time when compared to multi-layer perceptron networks, RBFNNs present a compelling option to conventional neural network models. Along with experimental data, the research offers a theoretical analysis of these techniques, indicating competitive performance and a few advantages over traditional kernel techniques in terms of adaptability (ability to take into account unlabeled data) and computing complexity. The research also discusses current achievements in using soft k-means features for image identification and other tasks
    • …
    corecore