2,659 research outputs found

    How to Influence People with Partial Incentives

    Get PDF
    We study the power of fractional allocations of resources to maximize influence in a network. This work extends in a natural way the well-studied model by Kempe, Kleinberg, and Tardos (2003), where a designer selects a (small) seed set of nodes in a social network to influence directly, this influence cascades when other nodes reach certain thresholds of neighbor influence, and the goal is to maximize the final number of influenced nodes. Despite extensive study from both practical and theoretical viewpoints, this model limits the designer to a binary choice for each node, with no way to apply intermediate levels of influence. This model captures some settings precisely, e.g. exposure to an idea or pathogen, but it fails to capture very relevant concerns in others, for example, a manufacturer promoting a new product by distributing five "20% off" coupons instead of giving away one free product. While fractional versions of problems tend to be easier to solve than integral versions, for influence maximization, we show that the two versions have essentially the same computational complexity. On the other hand, the two versions can have vastly different solutions: the added flexibility of fractional allocation can lead to significantly improved influence. Our main theoretical contribution is to show how to adapt the major positive results from the integral case to the fractional case. Specifically, Mossel and Roch (2006) used the submodularity of influence to obtain their integral results; we introduce a new notion of continuous submodularity, and use this to obtain matching fractional results. We conclude that we can achieve the same greedy (1−1/e−ϵ)(1-1/e-\epsilon)-approximation for the fractional case as the integral case. In practice, we find that the fractional model performs substantially better than the integral model, according to simulations on real-world social network data

    Adaptive Submodular Influence Maximization with Myopic Feedback

    Full text link
    This paper examines the problem of adaptive influence maximization in social networks. As adaptive decision making is a time-critical task, a realistic feedback model has been considered, called myopic. In this direction, we propose the myopic adaptive greedy policy that is guaranteed to provide a (1 - 1/e)-approximation of the optimal policy under a variant of the independent cascade diffusion model. This strategy maximizes an alternative utility function that has been proven to be adaptive monotone and adaptive submodular. The proposed utility function considers the cumulative number of active nodes through the time, instead of the total number of the active nodes at the end of the diffusion. Our empirical analysis on real-world social networks reveals the benefits of the proposed myopic strategy, validating our theoretical results.Comment: Accepted by IEEE/ACM International Conference Advances in Social Networks Analysis and Mining (ASONAM), 201

    MAXIMIZING THE SPEED OF INFLUENCE IN SOCIAL NETWORKS

    Get PDF
    Influence maximization in social networks is the problem of selecting a limited size of influential users as seed nodes so that the influence from these seed nodes can propagate to the largest number of other nodes in the network. Previous studies in influence maximization focused on three areas, i.e., designing propagation models, improving algorithms of seed-node selection and exploiting the structure of social networks. However, most of these studies ignored the time constraint in influence propagation. In this paper, I studied how to maximize influence propagation in a given time, i.e., maximizing the speed of influence propagation in social networks. I extended the classic Independent Cascade (IC) model to a Continuous Dynamic Extended Independent Cascade (CDE-IC) model. In addition, I propose a novel heuristic algorithm and evaluate the algorithm using two large academic collaboration data sets from www.arXiv.org. Comparing with previous classic heuristic algorithms on the CDE-IC model, the new algorithm is 9%-18% faster in influence propagation. Furthermore, I gave solution to calculate propagation probability between adjacent nodes by exploiting the structure of social networks

    Manipulating concept spread using concept relationships

    Get PDF
    The propagation of concepts in a population of agents is a form of influence spread, which can be modelled as a cascade from a set of initially activated individuals. The study of such influence cascades, in particular the identification of influential individuals, has a wide range of applications including epidemic control, viral marketing and the study of social norms. In real-world environments there may be many concepts spreading and interacting. These interactions can affect the spread of a given concept, either boosting it and allowing it to spread further, or inhibiting it and limiting its capability to spread. Previous work does not consider how the interactions between concepts affect concept spread. Taking concept interactions into consideration allows for indirect concept manipulation, meaning that we can affect concepts we are not able to directly control. In this paper, we consider the problem of indirect concept manipulation, and propose heuristics for indirectly boosting or inhibiting concept spread in environments where concepts interact. We define a framework that allows for the interactions between any number of concepts to be represented, and present a heuristic that aims to identify important influence paths for a given target concept in order to manipulate its spread. We compare the performance of this heuristic, called maximum probable gain, against established heuristics for manipulating influence spread
    • …
    corecore