119 research outputs found

    Information Theory and Its Application in Machine Condition Monitoring

    Get PDF
    Condition monitoring of machinery is one of the most important aspects of many modern industries. With the rapid advancement of science and technology, machines are becoming increasingly complex. Moreover, an exponential increase of demand is leading an increasing requirement of machine output. As a result, in most modern industries, machines have to work for 24 hours a day. All these factors are leading to the deterioration of machine health in a higher rate than before. Breakdown of the key components of a machine such as bearing, gearbox or rollers can cause a catastrophic effect both in terms of financial and human costs. In this perspective, it is important not only to detect the fault at its earliest point of inception but necessary to design the overall monitoring process, such as fault classification, fault severity assessment and remaining useful life (RUL) prediction for better planning of the maintenance schedule. Information theory is one of the pioneer contributions of modern science that has evolved into various forms and algorithms over time. Due to its ability to address the non-linearity and non-stationarity of machine health deterioration, it has become a popular choice among researchers. Information theory is an effective technique for extracting features of machines under different health conditions. In this context, this book discusses the potential applications, research results and latest developments of information theory-based condition monitoring of machineries

    Aika: A Distributed Edge System For Machine Learning Inference. Detecting and defending against abnormal behavior in untrusted edge environments

    Get PDF
    The edge computing paradigm has recently started to gain a lot of momentum. The field of Artificial Intelligence (AI) has also grown in recent years, and there is currently ongoing research that investigates how AI can be applied to numerous of different fields. This includes the edge computing domain. In Norway, there is currently ongoing research being conducted that investigates how the confluence between AI and edge computing can be used to hinder fish crime, by stationing surveillance equipment aboard fishing vessels, and perform all the monitoring directly on the vessel with support of AI. This is challenging for several reasons. First and foremost, the equipment needs to be stationed on the vessel, where actors may impose a threat to it and attempt to damage it, or interfere with the analytical process. The second challenge is to enable multiple machine learning pipelines to be executed effectively on the equipment. This requires a versatile computation model, where data is handled in a privacy preserving manner. This thesis presents Áika, a distributed edge computing system that supports machine learning inference in such untrusted edge environments. Áika is designed as a hierarchical fault tolerant system that supports a directed acyclic graph (DAG) computation model for executing machine inference on the edge, where a monitor residing in a trusted location can ensure that the system is running as expected. The experiment results demonstrate that Áika can tolerate failures while remaining operable with a stable throughput, although this will depend on the specific configuration and what computations that are implemented. The results also demonstrate that Áika can be used for both simple tasks, like counting words in a textual document, and for more complex tasks, like performing feature extraction using pre-trained deep learning models that are distributed across different workers. With Áika, application developers can develop fault tolerant and different distributed DAGs composed of multiple pipelines

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 16th International Annual Conference on Cyber Security, CNCERT 2020, held in Beijing, China, in August 2020. The 17 papers presented were carefully reviewed and selected from 58 submissions. The papers are organized according to the following topical sections: access control; cryptography; denial-of-service attacks; hardware security implementation; intrusion/anomaly detection and malware mitigation; social network security and privacy; systems security

    Big data-driven multimodal traffic management : trends and challenges

    Get PDF

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 16th International Annual Conference on Cyber Security, CNCERT 2020, held in Beijing, China, in August 2020. The 17 papers presented were carefully reviewed and selected from 58 submissions. The papers are organized according to the following topical sections: access control; cryptography; denial-of-service attacks; hardware security implementation; intrusion/anomaly detection and malware mitigation; social network security and privacy; systems security

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Trustworthiness in Mobile Cyber Physical Systems

    Get PDF
    Computing and communication capabilities are increasingly embedded in diverse objects and structures in the physical environment. They will link the ‘cyberworld’ of computing and communications with the physical world. These applications are called cyber physical systems (CPS). Obviously, the increased involvement of real-world entities leads to a greater demand for trustworthy systems. Hence, we use "system trustworthiness" here, which can guarantee continuous service in the presence of internal errors or external attacks. Mobile CPS (MCPS) is a prominent subcategory of CPS in which the physical component has no permanent location. Mobile Internet devices already provide ubiquitous platforms for building novel MCPS applications. The objective of this Special Issue is to contribute to research in modern/future trustworthy MCPS, including design, modeling, simulation, dependability, and so on. It is imperative to address the issues which are critical to their mobility, report significant advances in the underlying science, and discuss the challenges of development and implementation in various applications of MCPS
    corecore