2,893 research outputs found

    Machine-Part cell formation through visual decipherable clustering of Self Organizing Map

    Full text link
    Machine-part cell formation is used in cellular manufacturing in order to process a large variety, quality, lower work in process levels, reducing manufacturing lead-time and customer response time while retaining flexibility for new products. This paper presents a new and novel approach for obtaining machine cells and part families. In the cellular manufacturing the fundamental problem is the formation of part families and machine cells. The present paper deals with the Self Organising Map (SOM) method an unsupervised learning algorithm in Artificial Intelligence, and has been used as a visually decipherable clustering tool of machine-part cell formation. The objective of the paper is to cluster the binary machine-part matrix through visually decipherable cluster of SOM color-coding and labelling via the SOM map nodes in such a way that the part families are processed in that machine cells. The Umatrix, component plane, principal component projection, scatter plot and histogram of SOM have been reported in the present work for the successful visualization of the machine-part cell formation. Computational result with the proposed algorithm on a set of group technology problems available in the literature is also presented. The proposed SOM approach produced solutions with a grouping efficacy that is at least as good as any results earlier reported in the literature and improved the grouping efficacy for 70% of the problems and found immensely useful to both industry practitioners and researchers.Comment: 18 pages,3 table, 4 figure

    Image Segmentation Using Ant System-based Clustering Algorithm

    Get PDF
    Industrial applications of computer vision sometimes require detection of atypical objects that occur as small groups of pixels in digital images. These objects are difficult to single out because they are small and randomly distributed. In this work we propose an image segmentation method using the novel Ant System-based Clustering Algorithm (ASCA). ASCA models the foraging behaviour of ants, which move through the data space searching for high data-density regions, and leave pheromone trails on their path. The pheromone map is used to identify the exact number of clusters, and assign the pixels to these clusters using the pheromone gradient. We applied ASCA to detection of microcalcifications in digital mammograms and compared its performance with state-of-the-art clustering algorithms such as 1D Self-Organizing Map, k-Means, Fuzzy c-Means and Possibilistic Fuzzy c-Means. The main advantage of ASCA is that the number of clusters needs not to be known a priori. The experimental results show that ASCA is more efficient than the other algorithms in detecting small clusters of atypical data

    Enhanced feature selection algorithm using ant Colony Optimization and fuzzy memberships

    Full text link
    Feature selection is an indispensable pre-processing step when mining huge datasets that can significantly improve the overall system performance. This paper presents a novel feature selection method that utilizes both the Ant Colony Optimization (ACO) and fuzzy memberships. The algorithm estimates the local importance of subsets of features, i.e., their pheromone intensities by utilizing fuzzy c-means (FCM) clustering technique. In order to prove the effectiveness of the proposed method, a comparison with another powerful ACO based feature selection algorithm that utilizes the Mutual Information (MI) concept is presented. The method is tested on two biosignals driven applications: Brain Computer Interface (BCI), and prosthetic devices control with myoelectric signals (MES). A linear discriminant analysis (LDA) classifier is used to measure the performance of the selected subsets in both applications. Practical experiments prove that the new algorithm can be as accurate as the original method with MI, but with a significant reduction in computational cost, especially when dealing with huge datasets

    Speech Recognition Using Combined Fuzzy and Ant Colony algorithm

    Get PDF
    In recent years various methods has been proposed for speech recognition and removing noise from the speech signal became an important issue. In this paper a fuzzy system has been proposed for speech recognition that can obtain accurate results using classification of speech signals with “Ant Colony” algorithm.  First, speech samples are given to the fuzzy system to obtain a pattern for every set of signals that can be helpful for dimensionality reduction, easier checking of outcome and better recognition of signals.  Then, the “ACO” algorithm is used to cluster these signals and determine a cluster for each input signal. Also, with this method we will be able to recognize noise and consider it in a separate cluster and remove it from the input signal. Results show that the accuracy for speech detection and noise removal is desirable
    • …
    corecore