2,004 research outputs found

    CLIVAR Exchanges - The Oceanography of the North Atlantic and adjacent Seas

    No full text

    Oceanus.

    Get PDF
    v. 37, no. 2 (1994

    Modelling secondary production in the Norwegian Sea with a fully coupled physical/primary production/individual-based Calanus finmarchicus model system

    Get PDF
    The copepod Calanus finmarchicus is the dominant species of the meso-zooplankton in the Norwegian Sea, and constitutes an important link between the phytoplankton and the higher trophic levels in the Norwegian Sea food chain. An individual-based model for C. finmarchicus, based on super-individuals and evolving traits for behaviour, stages, etc., is two-way coupled to the NORWegian ECOlogical Model system (NORWECOM). One year of modelled C. finmarchicus spatial distribution, production and biomass are found to represent observations reasonably well. High C. finmarchicus abundance is found along the Norwegian shelf-break in the early summer, while the overwintering population is found along the slope and in the deeper Norwegian Sea basins. The timing of the spring bloom is generally later than in the observations. Annual Norwegian Sea production is found to be 29 million tonnes of carbon and a production to biomass (P/B) ratio of 4.3 emerges. Sensitivity tests show that the modelling system is robust to initial values of behavioural traits and with regards to the number of super-individuals simulated given that this is above about 50,000 individuals. Experiments with the model system indicate that it provides a valuable tool for studies of ecosystem responses to causative forces such as prey density or overwintering population size. For example, introducing C. finmarchicus food limitations reduces the stock dramatically, but on the other hand, a reduced stock may rebuild in one year under normal conditions

    Numerical modeling study of the circulation of the Greenland Sea

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 1994This study is a simulation of the circulation of the Greenland Sea aimed at modeling some of the issues related to the Great Salinity Anomaly (GSA) and deep water formation using a primitive equation ocean general circulation model (Semtner, 1974). The features of the model include: (1) a high resolution, (2) real topography, (3) open boundaries at the south and north, and (4) temporally variable wind and thermohaline forcing. The model is used to study: (1) the spreading of a fresh water anomaly, (2) the mechanisms of cross frontal mixing that lead to deep water formation, (3) the general circulation of the deep and upper layers of the ocean and their dependence on wind and thermohaline forcing, and (4) the possible implications of meso-scale and large-scale variability on climate change. One of the major results of this work is the simulation of continental shelf waves propagating along the shelf slope of Greenland between 77\sp\circN and 72\sp\circN. Waves with a subinertial period of 17.2 hrs, a wavelength of 363 km, a phase speed of 586 cm/s and a group velocity of 409 cm/s, are found. Possible mechanism for generation of shelf waves is presented. It is suggested that some energy related with wave activity may support cross-frontal mixing in the East Greenland Current (EGC), where formation of the two main sources of North Atlantic Deep Water (e.g. Norwegian Sea Deep Water and Denmark Strait Overflow Water) have been reported. The results from the GSA simulation suggest that during the early stage of the GSA (e.g. during its propagation with the EGC to the south, in the late 1960s) when no observations are available, the fresh water signal is not being mixed into the interior circulation of the Greenland Sea gyre. The second experiment, representing recirculation of the GSA from the North Atlantic back into the Greenland Sea, in the late 1970s, shows freshening in the Greenland Sea gyre of comparable magnitudes (-0.05 to -0.1 psu) to the observed ones. These results agree with the earlier indirect measurements (Rhein, 1991; Schlosser et al., 1991) indicating dramatic reduction of deep water renewal in the Greenland Sea in the late 1970s and early 1980s. From the general circulation experiments it has been found that the ocean response to seasonal forcing is mainly barotropic. This implies a strong topographic control in the distribution of currents and hydrographic variables. Most of the areas of topographic steering which are simulated in the region have been reported in the literature. The so-called Molloy Deep eddy shows its direct dependence on the large scale dynamics affecting the northward flow of the West Spitsbergen Current (WSC), controlling this way a net mass transport into the Arctic Ocean. Simulations with different wind forcing suggest dependence of the Greenland Sea gyre circulation on the variations with time of the local wind forcing. Results indicate that monthly mean wind stress forcing probably underestimate wind forcing in the model. Analysis of surface, intermediate and deep ocean velocity fields compare reasonably well with observations

    Seasonal variability of sea surface height in the coastal waters and deep basins of the Nordic Seas

    Get PDF
    Sea surface height measured by the Envisat radar altimeter over open ocean and from leads in sea ice are combined to generate a complete view of variability in the Nordic Seas, geographically and seasonally. The observed seasonal variability is decomposed using empirical orthogonal functions, and is consistent with seasonal variations in steric and dynamic forcing. Wintertime increase in sea surface height on the east Greenland shelf is hypothesised to be caused by wind-forced downwelling, which provides direct evidence for the regional play of coastal dynamics. High levels of eddy kinetic energy around the sea ice edge in Fram Strait, and off east Greenland and Svalbard are consistent with the interaction of the wind with the ice edge

    Oceanus.

    Get PDF
    v. 39, no. 2 (1996

    Pan-Arctic Fisheries and their Assessment

    Get PDF
    Pan-Arctic fisheries are highly diverse in their purpose, species biology, productivity, economic and strategic importance as well as in how they are prosecuted. They range from full industrial fisheries to community-based artisanal, sport and subsistence fisheries. The nature of Arctic ecosystems in the region varies from extremely productive to relatively barren in terms of fisheries production. Gear types vary, but offshore trawl fisheries and inshore and freshwater gillnet fisheries are the most common. Rights-based fisheries (e.g., for indigenous inhabitants) are more prominent in the Canadian and American Arctic than in European jurisdictions. The principal harvested species in freshwater environments tend to be from few taxa mainly Salvelinus spp. and from the family Coregonidae, while the marine taxa are more diverse. Compared to north temperate fisheries, Arctic fisheries have impressive variation across longitudes; some jurisdictions support only small-scale subsistence fisheries, whereas others contain some of the largest yields among industrial fisheries. Approaches to scientific assessment are also highly diverse with a range from catch-based indicators to sophisticated fully age-structured population models
    corecore