9,198 research outputs found

    Damage localization map using electromechanical impedance spectrums and inverse distance weighting interpolation: Experimental validation on thin composite structures

    Get PDF
    Piezoelectric sensors are widely used for structure health monitoring technique. In particular, electromechanical impedance techniques give simple and low-cost solutions for detecting damage in composite structures. The purpose of the method proposed in this article is to generate a damage localization map based on both indicators computed from electromechanical impedance spectrums and inverse distance weighting interpolation. The weights for the interpolation have a physical sense and are computed according to an exponential law of the measured attenuation of acoustic waves. One of the main advantages of the method, so-called data-driven method, is that only experimental data are used as inputs for our algorithm. It does not rely on any model. The proposed method has been validated on both one-dimensional and two-dimensional composite structures

    Putting energy back in control

    Get PDF
    A control system design technique using the principle of energy balancing was analyzed. Passivity-based control (PBC) techniques were used to analyze complex systems by decomposing them into simpler sub systems, which upon interconnection and total energy addition were helpful in determining the overall system behavior. An attempt to identify physical obstacles that hampered the use of PBC in applications other than mechanical systems was carried out. The technique was applicable to systems which were stabilized with passive controllers

    On motion analysis and elastic response of floating offshore wind turbines

    Get PDF

    A dissipative scheme to approach the boundary of two-qubit entangled mixed states

    Full text link
    We discuss the generation of states close to the boundary-family of maximally entangled mixed states as defined by the use of concurrence and linear entropy. The coupling of two qubits to a dissipation-affected bosonic mode is able to produce a bipartite state having, for all practical purposes, the entanglement and purity properties of one of such boundary states. We thoroughly study the effects that thermal and squeezed character of the bosonic mode have in such a process and we discuss tolerance to qubit phase-damping mechanisms. The non-demanding nature of the scheme makes it realizable in a matter-light based physical set-up, which we address in some details.Comment: 9 pages, 7 figures, RevTeX4, Accepted for publication by Physics Review

    Damping of Growth Oscillations in Molecular Beam Epitaxy: A Renormalization Group Approach

    Full text link
    The conserved Sine-Gordon Equation with nonconserved shot noise is used to model homoepitaxial crystal growth. With increasing coverage the renormalized pinning potential changes from strong to weak. This is interpreted as a transition from layer-by-layer to rough growth. The associated length and time scales are identified, and found to agree with recent scaling arguments. A heuristically postulated nonlinear term 2(h)2\nabla^2 (\nabla h)^2 is created under renormalization.Comment: 17 Pages Late

    The Structure of Structure Formation Theories

    Get PDF
    We study the general structure of models for structure formation, with applications to the reverse engineering of the model from observations. Through a careful accounting of the degrees of freedom in covariant gravitational instability theory, we show that the evolution of structure is completely specified by the stress history of the dark sector. The study of smooth, entropic, sonic, scalar anisotropic, vector anisotropic, and tensor anisotropic stresses reveals the origin, robustness, and uniqueness of specific model phenomenology. We construct useful and illustrative analytic solutions that cover cases with multiple species of differing equations of state relevant to the current generation of models, especially those with effectively smooth components. We present a simple case study of models with phenomenologies similar to that of a LambdaCDM model to highlight reverse-engineering issues. A critical-density universe dominated by a single type of dark matter with the appropriate stress history can mimic a LambdaCDM model exactly.Comment: 31 pages, 18 figures, RevTeX, submitted to Phys. Rev.
    corecore