3,410 research outputs found

    A Model-Theoretic Reconstruction of the Operational Semantics of Logic Programs

    Get PDF
    AbstractIn this paper we define a new notion or truth on Herbrand interpretations extended with variables which allows us to capture, by means of suitable models, various observable properties, such as the ground success set, the set of atomic consequences, and the computed answer substitutions. The notion of truth extends the classical one to account for non-ground formulas in the interpretations. The various operational semantics are all models. An ordering on interpretations is defined to overcome the problem that the intersection of a set of models is not necessarily a model. The set of interpretations with this partial order is shown to be a complete lattice, and the greatest lower bound of any set of models is shown to be a model. Thus there exists a least model, which is the least Herbrand model and therefore the ground success set semantics. Richer operational semantics are non-least models, which can, however, be effectively defined by fixpoint constructions. The model corresponding to the computed answer substitutions operational semantics is the most primitive one (the others can easily be obtained from it)

    Classical logic, continuation semantics and abstract machines

    Get PDF
    One of the goals of this paper is to demonstrate that denotational semantics is useful for operational issues like implementation of functional languages by abstract machines. This is exemplified in a tutorial way by studying the case of extensional untyped call-by-name λ-calculus with Felleisen's control operator 𝒞. We derive the transition rules for an abstract machine from a continuation semantics which appears as a generalization of the ¬¬-translation known from logic. The resulting abstract machine appears as an extension of Krivine's machine implementing head reduction. Though the result, namely Krivine's machine, is well known our method of deriving it from continuation semantics is new and applicable to other languages (as e.g. call-by-value variants). Further new results are that Scott's D∞-models are all instances of continuation models. Moreover, we extend our continuation semantics to Parigot's λμ-calculus from which we derive an extension of Krivine's machine for λμ-calculus. The relation between continuation semantics and the abstract machines is made precise by proving computational adequacy results employing an elegant method introduced by Pitts

    A Case Study on Logical Relations using Contextual Types

    Full text link
    Proofs by logical relations play a key role to establish rich properties such as normalization or contextual equivalence. They are also challenging to mechanize. In this paper, we describe the completeness proof of algorithmic equality for simply typed lambda-terms by Crary where we reason about logically equivalent terms in the proof environment Beluga. There are three key aspects we rely upon: 1) we encode lambda-terms together with their operational semantics and algorithmic equality using higher-order abstract syntax 2) we directly encode the corresponding logical equivalence of well-typed lambda-terms using recursive types and higher-order functions 3) we exploit Beluga's support for contexts and the equational theory of simultaneous substitutions. This leads to a direct and compact mechanization, demonstrating Beluga's strength at formalizing logical relations proofs.Comment: In Proceedings LFMTP 2015, arXiv:1507.0759

    Monoidal computer III: A coalgebraic view of computability and complexity

    Full text link
    Monoidal computer is a categorical model of intensional computation, where many different programs correspond to the same input-output behavior. The upshot of yet another model of computation is that a categorical formalism should provide a much needed high level language for theory of computation, flexible enough to allow abstracting away the low level implementation details when they are irrelevant, or taking them into account when they are genuinely needed. A salient feature of the approach through monoidal categories is the formal graphical language of string diagrams, which supports visual reasoning about programs and computations. In the present paper, we provide a coalgebraic characterization of monoidal computer. It turns out that the availability of interpreters and specializers, that make a monoidal category into a monoidal computer, is equivalent with the existence of a *universal state space*, that carries a weakly final state machine for any pair of input and output types. Being able to program state machines in monoidal computers allows us to represent Turing machines, to capture their execution, count their steps, as well as, e.g., the memory cells that they use. The coalgebraic view of monoidal computer thus provides a convenient diagrammatic language for studying computability and complexity.Comment: 34 pages, 24 figures; in this version: added the Appendi
    • …
    corecore