964 research outputs found

    Closed-loop control of anesthesia : survey on actual trends, challenges and perspectives

    Get PDF
    Automation empowers self-sustainable adaptive processes and personalized services in many industries. The implementation of the integrated healthcare paradigm built on Health 4.0 is expected to transform any area in medicine due to the lightning-speed advances in control, robotics, artificial intelligence, sensors etc. The two objectives of this article, as addressed to different entities, are: i) to raise awareness throughout the anesthesiologists about the usefulness of integrating automation and data exchange in their clinical practice for providing increased attention to alarming situations, ii) to provide the actualized insights of drug-delivery research in order to create an opening horizon towards precision medicine with significantly improved human outcomes. This article presents a concise overview on the recent evolution of closed-loop anesthesia delivery control systems by means of control strategies, depth of anesthesia monitors, patient modelling, safety systems, and validation in clinical trials. For decades, anesthesia control has been in the midst of transformative changes, going from simple controllers to integrative strategies of two or more components, but not achieving yet the breakthrough of an integrated system. However, the scientific advances that happen at high speed need a modern review to identify the current technological gaps, societal implications, and implementation barriers. This article provides a good basis for control research in clinical anesthesia to endorse new challenges for intelligent systems towards individualized patient care. At this connection point of clinical and engineering frameworks through (semi-) automation, the following can be granted: patient safety, economical efficiency, and clinicians' efficacy

    Pain detection with bioimpedance methodology from 3-dimensional exploration of nociception in a postoperative observational trial

    Get PDF
    Although the measurement of dielectric properties of the skin is a long-known tool for assessing the changes caused by nociception, the frequency modulated response has not been considered yet. However, for a rigorous characterization of the biological tissue during noxious stimulation, the bioimpedance needs to be analyzed over time as well as over frequency. The 3-dimensional analysis of nociception, including bioimpedance, time, and frequency changes, is provided by ANSPEC-PRO device. The objective of this observational trial is the validation of the new pain monitor, named as ANSPEC-PRO. After ethics committee approval and informed consent, 26 patients were monitored during the postoperative recovery period: 13 patients with the in-house developed prototype ANSPEC-PRO and 13 with the commercial device MEDSTORM. At every 7 min, the pain intensity was measured using the index of Anspec-pro or Medstorm and the 0-10 numeric rating scale (NRS), pre-surgery for 14 min and post-anesthesia for 140 min. Non-significant differences were reported for specificity-sensitivity analysis between ANSPEC-PRO (AUC = 0.49) and MEDSTORM (AUC = 0.52) measured indexes. A statistically significant positive linear relationship was observed between Anspec-pro index and NRS (r(2) = 0.15, p < 0.01). Hence, we have obtained a validation of the prototype Anspec-pro which performs equally well as the commercial device under similar conditions

    Event-based MPC for propofol administration in anesthesia

    Get PDF
    Background and Objective : The automatic control of anesthesia is a demanding task mostly due to the presence of nonlinearities, intra- and inter-patient variability and specific clinical requirements to be meet. The traditional approach to achieve the desired depth of hypnosis level is based on knowledge and experience of the anesthesiologist. In contrast to a typical automatic control system, their actions are based on events that are related to the effect of the administrated drug. Thus, it is interesting to build a control system that will be able to mimic the behavior of the human way of actuation, simultaneously keeping the advantages of an automatic system.Methods : In this work, an event-based model predictive control system is proposed and analyzed. The nonlinear patient model is used to form the predictor structure and its linear part is exploited to design the predictive controller, resulting in an individualized approach. In such a scenario, the BIS is the controlled variable and the propofol infusion rate is the control variable. The event generator governs the computation of control action applying a dead-band sampling technique. The proposed control architecture has been tested in simulation considering process noise and unmeasurable disturbances. The evaluation has been made for a set of patients using nonlinear pharmacokinetic/pharmacodynamic models allowing realistic tests scenarios, including inter- and intra-patient variability.Results For the considered patients dataset the number of control signal changes has been reduced of about 55% when compared to the classical control system approach and the drug usage has been reduced of about 2%. At the same time the control performance expressed by the integrated absolute error has been degraded of about 11%.Conclusions : The event-based MPC control system meets all the clinical requirements. The robustness analysis also demonstrates that the event-based architecture is able to satisfy the specifications in the presence of significant process noise and modelling errors related to inter- and intra-patient variability, providing a balanced solution between complexity and performance. (c) 2022 Elsevier B.V. All rights reserved

    Machine learning prediction of burst suppression under general anesthesia

    Get PDF
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2021-2022. Tutor/Director: Pedro Luís Gambús CerrilloDuring propofol-remifentanil induced general anesthesia, burst suppression (BS) EEG patterns commonly occur in around 50% of the patients, with an increasing incidence with age. However, this phenomenon has been reported to be an indicator of too high anesthetic doses and produce adverse outcomes such as postoperative delirium, cognitive deficits, and it has even reported to be a postoperative mortality predictor. In light of the above, the present study aims to address the lack of predictive techniques for BS occurrence anticipation by developing Machine Learning predictive models such as SVM, KNN, RF, and XGB. Therefore, a large dataset including different monitored parameters during propofol-remifentanil induced general anesthesia from many patients has been used for both training and testing the models, as well as for final validation of the selected model. Obtained results present an acceptable overall performance of the SVM model with a ROC-AUC score of 0.829, and a feature importance analysis shows a high influence of age and BIS value for the final prediction. Nonetheless, 25% of the predictions have been reported to have accuracies under 0.6, questioning the reliability of the model and making it useful as an orientative aiding tool for anesthesiologists, but not the ultimate decisive factor. Hence, further studies involving more variability on the data, validation techniques and confidence intervals for each process, and an exhaustive feature selection analysis, along with the repetition of the study with different ML algorithms should be performed to improve the predictive ability of the current model and achieve better performances

    Autonomous systems in anesthesia : where do we stand in 2020? A narrative review

    Get PDF
    As most of us are aware, almost every facet of our society is becoming, for better or worse, progressively more technology-dependent. Technological advancement has made autonomous systems, also known as robots, an integral part of our life in several fields, including medicine. The application of robots in anesthesia could be classified into 3 types of robots. The first ones are pharmacological robots. These robots are based on closed-loop systems that allow better-individualized anesthetic drug titration for optimal homeostasis during general anesthesia and sedation. Recent evidence also demonstrates that autonomous systems could control hemodynamic parameters proficiently outperforming manual control in the operating room. The second type of robot is mechanical. They enable automated motorized reproduction of tasks requiring high manual dexterity level. Such robots have been advocated to be more accurate than humans and, thus, could be safer for the patient. The third type is a cognitive robot also known as decision support system. This type of robot is able to recognize crucial clinical situation that requires human intervention. When these events occur, the system notifies the attending clinician, describes relevant related clinical observations, proposes pertinent therapeutic options and, when allowed by the attending clinician, may even administer treatment. It seems that cognitive robots could increase patients' safety. Robots in anesthesia offer not only the possibility to free the attending clinicians from repetitive tasks but can also reduce mental workload allowing them to focus on tasks that require human intelligence such as analytical and clinical approach, lifesaving decision-making capacity, and interpersonal interaction. Nevertheless, further studies have yet to be done to test the combination of these 3 types of robots to maintain simultaneously the homeostasis of multiple biological variables and to test the safety of such combination on a large-scale population

    An open source patient simulator for design and evaluation of computer based multiple drug dosing control for anesthetic and hemodynamic variables

    Get PDF
    We are witnessing a notable rise in the translational use of information technology and control systems engineering tools in clinical practice. This paper empowers the computer based drug dosing optimization of general anesthesia management by means of multiple variables for patient state stabilization. The patient simulator platform is designed through an interdisciplinary combination of medical, clinical practice and systems engineering expertise gathered in the last decades by our team. The result is an open source patient simulator in Matlab/Simulink from Mathworks(R). Simulator features include complex synergic and antagonistic interaction aspects between general anesthesia and hemodynamic stabilization variables. The anesthetic system includes the hypnosis, analgesia and neuromuscular blockade states, while the hemodynamic system includes the cardiac output and mean arterial pressure. Nociceptor stimulation is also described and acts as a disturbance together with predefined surgery profiles from a translation into signal form of most commonly encountered events in clinical practice. A broad population set of pharmacokinetic and pharmacodynamic (PKPD) variables are available for the user to describe both intra- and inter-patient variability. This simulator has some unique features, such as: i) additional bolus administration from anesthesiologist, ii) variable time-delays introduced by data window averaging when poor signal quality is detected, iii) drug trapping from heterogeneous tissue diffusion in high body mass index patients. We successfully reproduced the clinical expected effects of various drugs interacting among the anesthetic and hemodynamic states. Our work is uniquely defined in current state of the art and first of its kind for this application of dose management problem in anesthesia. This simulator provides the research community with accessible tools to allow a systematic design, evaluation and comparison of various control algorithms for multi-drug dosing optimization objectives in anesthesia

    Predictive modelling of Loss Of Consciousness under general anaesthesia

    Get PDF
    Treballs Finals de Grau d'Enginyeria Biomèdica. Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona. Curs: 2021-2022. Director: Pedro L. Gambú

    Closed-Loop Control of Anaesthetic Effect

    Get PDF
    Archivo disponible en la web de la revista, Open Access, en la siguiente URL: https://www.intechopen.com/books/pharmacology/closed-loop-control-of-anesthetic-effect Se puede referenciar de la siguiente manera: Santiago Torres, Juan A. Méndez, Héctor Reboso, José A. Reboso and Ana León (2012). Closed-Loop Control of Anaesthetic Effect, Pharmacology, Dr. Luca Gallelli (Ed.), InTech, DOI: 10.5772/37609. Available from: https://www.intechopen.com/books/pharmacology/closed-loop-control-of-anesthet
    corecore