192 research outputs found

    Weaving Concurrency in eXecutable Domain-Specific Modeling Languages

    Get PDF
    International audienceThe emergence of modern concurrent systems (e.g., Cyber-Physical Systems or the Internet of Things) and highly-parallel platforms (e.g., many-core, GPGPU pipelines, and distributed platforms) calls for Domain-Specific Modeling Languages (DSMLs) where concurrency is of paramount importance. Such DSMLs are intended to propose constructs with rich concurrency semantics, which allow system designers to precisely define and analyze system behaviors. However , specifying and implementing the execution semantics of such DSMLs can be a difficult, costly and error-prone task. Most of the time the concurrency model remains implicit and ad-hoc, embedded in the underlying execution environment. The lack of an explicit concurrency model prevents: the precise definition, the variation and the complete understanding of the semantics of the DSML, the effective usage of concurrency-aware analysis techniques, and the exploitation of the concurrency model during the system refinement (e.g., during its allocation on a specific platform). In this paper, we introduce a concurrent executable metamodeling approach, which supports a modular definition of the execution semantics , including the concurrency model, the semantic rules, and a well-defined and expressive communication protocol between them. Our approach comes with a dedicated metalanguage to specify the communication protocol, and with an execution environment to simulate executable models. We illustrate and validate our approach with an implementation of fUML, and discuss the modularity and applicability of our approach

    A Tool-Supported Approach for Concurrent Execution of Heterogeneous Models

    Get PDF
    International audienceIn the software and systems modeling community, research on domain-specific modeling languages (DSMLs) is focused on providing technologies for developing languages and tools that allow domain experts to develop system solutions efficiently. Unfortunately, the current lack of support for explicitly relating concepts expressed in different DSMLs makes it very difficult for software and system engineers to reason about information spread across models describing different system aspects [4]. As a particular challenge, we investigate in this paper relationships between, possibly heterogeneous, behavioral models to support their concurrent execution. This is achieved by following a modular executable metamodeling approach for behavioral semantics understanding, reuse, variability and composability [5]. This approach supports an explicit model of concurrency (MoCC) [6] and domain-specific actions (DSA) [10] with a well-defined protocol between them (incl., mapping, feedback and callback) reified through explicit domain-specific events (DSE) [12]. The protocol is then used to infer a relevant behavioral language interface for specifying coordination patterns to be applied on conforming executable models [17]. All the tooling of the approach is gathered in the GEMOC studio, and outlined in the next section. Currently, the approach is experienced on a systems engineering language provided by Thales, named Capella 7. The goal and current state of the case study are exposed in this paper. 7 Cf. https://www.polarsys.org/capella

    An approach to design smart grids and their IT system by cosimulation

    Get PDF
    International audienceSmart grids are the oncoming generation of power grids, which rely on information and communication technologies to tackle decentralized and intermittent energy sources such as wind farms and photovoltaic plants. They integrate electronics, software information processing and telecommunications technical domains. Therefore the design of smart grids is complex because of the various technical domains and modeling tools at stake. In this article, we present an approach to their design, which relies on model driven engineering, executable models and FMI based cosimulation. This approach is illustrated on the use case of an insular power grid and allows to study the impact of power production decision

    Contracts for Model Execution Verification

    Get PDF
    International audienceOne of the main goals of model-driven engineering is the manipulation of models as exclusive software artifacts. Model execution is in particular a means to substitute models for code. We focus in this paper on verifying model executions. We use a contract-based approach to specify an execution semantics for a meta-model. We show that an execution semantics is a seamless extension of a rigorous meta-model specification and is composed of complementary levels, from static element definition to dynamic elements, execution specifications as well. We use model transformation contracts for controlling the dynamic consistent evolution of a model during its execution. As an illustration, we apply our approach to UML state machines using OCL as the contract expression language

    Coping with Semantic Variation Points in Domain-Specific Modeling Languages

    Get PDF
    International audienceEven if they exhibit differences, many Domain-Specific Modeling Languages (DSMLs) share elements from their concepts, notations and semantics. StateCharts is a well known family of DSMLs that share many concepts but exhibit notational differences and many execution semantics variants (called Semantic Variation Points – SVPs –). For instance, when two conflicting transitions in a state machine are enabled by the same event occurrence, which transition is fired depends on the language variant (Harel original StateCharts, UML, Rhapsody, etc.) supported by the execution tool. Tools usually provide only one implementation of SVPs. It complicates communication both between tools and end-users, and hinders the co-existence of multiple variants. More generally, Language Workbenches dedicated to the specification and implementation of eXecutable Domain-Specific Modeling Languages (xDSMLs) often do not offer the tools and facilities to manage these SVPs, making it a time-consuming and troublesome activity. In this paper, we describe a modularized approach to the operational execution semantics of xDSMLs and show how it allows us to manage SVPs. We illustrate this proposal on StateCharts

    A Framework for Executable Systems Modeling

    Get PDF
    Systems Modeling Language (SysML), like its parent language, the Unified Modeling Language (UML), consists of a number of independently derived model languages (i.e. state charts, activity models etc.) which have been co-opted into a single modeling framework. This, together with the lack of an overarching meta-model that supports uniform semantics across the various diagram types, has resulted in a large unwieldy and informal language schema. Additionally, SysML does not offer a built in framework for managing time and the scheduling of time based events in a simulation. In response to these challenges, a number of auxiliary standards have been offered by the Object Management Group (OMG); most pertinent here are the foundational UML subset (fUML), Action language for fUML (Alf), and the UML profile for Modeling and Analysis of Real Time and Embedded Systems (MARTE). However, there remains a lack of a similar treatment of SysML tailored towards precise and formal modeling in the systems engineering domain. This work addresses this gap by offering refined semantics for SysML akin to fUML and MARTE standards, aimed at primarily supporting the development of time based simulation models typically applied for model verification and validation in systems engineering. The result of this work offers an Executable Systems Modeling Language (ESysML) and a prototype modeling tool that serves as an implementation test bed for the ESysML language. Additionally a model development process is offered to guide user appropriation of the provided framework for model building

    Revisiting visitors for modular extension of executable DSMLs

    Get PDF
    Executable Domain-Specific Modeling Languages (xDSMLs) are typically defined by metamodels that specify their abstract syntax, and model interpreters or compilers that define their execution semantics. To face the proliferation of xDSMLs in many domains, it is important to provide language engineering facilities for opportunistic reuse, extension, and customization of existing xDSMLs to ease the definition of new ones. Current approaches to language reuse either require to anticipate reuse, make use of advanced features that are not widely available in programming languages, or are not directly applicable to metamodel-based xDSMLs. In this paper, we propose a new language implementation pattern, named Revisitor, that enables independent extensibility of the syntax and semantics of metamodel-based xDSMLs with incremental compilation and without anticipation. We seamlessly implement our approach alongside the compilation chain of the Eclipse Modeling Framework, thereby demonstrating that it is directly and broadly applicable in various modeling environments. We show how it can be employed to incrementally extend both the syntax and semantics of the fUML language without requiring anticipation or re-compilation of existing code, and with acceptable performance penalty compared to classical handmade visitors
    • …
    corecore