217,105 research outputs found

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    A history and future of Web APIs

    Get PDF

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    Applying model-driven paradigm: CALIPSOneo experience

    Get PDF
    Model-Driven Engineering paradigm is being used by the research community in the last years, obtaining suitable results. However, there are few practical experiences in the enterprise field. This paper presents the use of this paradigm in an aeronautical PLM project named CALIPSOneo currently under development in Airbus. In this context, NDT methodology was adapted as methodology in order to be used by the development team. The paper presents this process and the results that we are getting from the project. Besides, some relevant learned lessons from the trenches are concluded.Ministerio de Ciencia e InnovaciĂłn TIN2010-20057-C03-02Junta de AndalucĂ­a TIC-578

    Atomic: an open-source software platform for multi-level corpus annotation

    Get PDF
    This paper presents Atomic, an open-source platform-independent desktop application for multi-level corpus annotation. Atomic aims at providing the linguistic community with a user-friendly annotation tool and sustainable platform through its focus on extensibility, a generic data model, and compatibility with existing linguistic formats. It is implemented on top of the Eclipse Rich Client Platform, a pluggable Java-based framework for creating client applications. Atomic - as a set of plug-ins for this framework - integrates with the platform and allows other researchers to develop and integrate further extensions to the software as needed. The generic graph-based meta model Salt serves as Atomic’s domain model and allows for unlimited annotation levels and types. Salt is also used as an intermediate model in the Pepper framework for conversion of linguistic data, which is fully integrated into Atomic, making the latter compatible with a wide range of linguistic formats. Atomic provides tools for both less experienced and expert annotators: graphical, mouse-driven editors and a command-line data manipulation language for rapid annotation

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Challenges for the Adoption of Model-Driven Web Engineering Approaches in Industry

    Get PDF
    Model-driven web engineering approaches have become an attractive research and technology solution for Web application development. However, after 20 years of development, they have attracted little attention from the Industry due to the mismatch between technical versus research requirements. In this joint work between academia and industry, the authors present the current problems of using these approaches in scale and provide guidelines to convert them into viable industry solutions.Ministerio de ciencia e InnovaciĂłn TIN2016-76956-C3-2-RMinisterio de EconomĂ­a y Competitividad TIN2015-71938-RED
    • …
    corecore