19,273 research outputs found

    HPC Cloud for Scientific and Business Applications: Taxonomy, Vision, and Research Challenges

    Full text link
    High Performance Computing (HPC) clouds are becoming an alternative to on-premise clusters for executing scientific applications and business analytics services. Most research efforts in HPC cloud aim to understand the cost-benefit of moving resource-intensive applications from on-premise environments to public cloud platforms. Industry trends show hybrid environments are the natural path to get the best of the on-premise and cloud resources---steady (and sensitive) workloads can run on on-premise resources and peak demand can leverage remote resources in a pay-as-you-go manner. Nevertheless, there are plenty of questions to be answered in HPC cloud, which range from how to extract the best performance of an unknown underlying platform to what services are essential to make its usage easier. Moreover, the discussion on the right pricing and contractual models to fit small and large users is relevant for the sustainability of HPC clouds. This paper brings a survey and taxonomy of efforts in HPC cloud and a vision on what we believe is ahead of us, including a set of research challenges that, once tackled, can help advance businesses and scientific discoveries. This becomes particularly relevant due to the fast increasing wave of new HPC applications coming from big data and artificial intelligence.Comment: 29 pages, 5 figures, Published in ACM Computing Surveys (CSUR

    Towards Knowledge in the Cloud

    Get PDF
    Knowledge in the form of semantic data is becoming more and more ubiquitous, and the need for scalable, dynamic systems to support collaborative work with such distributed, heterogeneous knowledge arises. We extend the “data in the cloud” approach that is emerging today to “knowledge in the cloud”, with support for handling semantic information, organizing and finding it efficiently and providing reasoning and quality support. Both the life sciences and emergency response fields are identified as strong potential beneficiaries of having ”knowledge in the cloud”

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    A Minimum-Cost Flow Model for Workload Optimization on Cloud Infrastructure

    Full text link
    Recent technology advancements in the areas of compute, storage and networking, along with the increased demand for organizations to cut costs while remaining responsive to increasing service demands have led to the growth in the adoption of cloud computing services. Cloud services provide the promise of improved agility, resiliency, scalability and a lowered Total Cost of Ownership (TCO). This research introduces a framework for minimizing cost and maximizing resource utilization by using an Integer Linear Programming (ILP) approach to optimize the assignment of workloads to servers on Amazon Web Services (AWS) cloud infrastructure. The model is based on the classical minimum-cost flow model, known as the assignment model.Comment: 2017 IEEE 10th International Conference on Cloud Computin

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Feature placement algorithms for high-variability applications in cloud environments

    Get PDF
    While the use of cloud computing is on the rise, many obstacles to its adoption remain. One of the weaknesses of current cloud offerings is the difficulty of developing highly customizable applications while retaining the increased scalability and lower cost offered by the multi-tenant nature of cloud applications. In this paper we describe a Software Product Line Engineering (SPLE) approach to the modelling and deployment of customizable Software as a Service (SaaS) applications. Afterwards we define a formal feature placement problem to manage these applications, and compare several heuristic approaches to solve the problem. The scalability and performance of the algorithms is investigated in detail. Our experiments show that the heuristics scale and perform well for systems with a reasonable load
    corecore