33 research outputs found

    Predictive modeling of webpage aesthetics

    Get PDF
    Aesthetics plays a key role in web design. However, most websites have been developed based on designers\u27 inspirations or preferences. While perceptions of aesthetics are intuitive abilities of humankind, the underlying principles for assessing aesthetics are not well understood. In recent years, machine learning methods have shown promising results in image aesthetic assessment. In this research, we used machine learning methods to study and explore the underlying principles of webpage aesthetics --Abstract, page iii

    HyperCell: A Bio-inspired Design Framework for Real-time Interactive Architectures

    Get PDF
    This pioneering research focuses on Biomimetic Interactive Architecture using “Computation”, “Embodiment”, and “Biology” to generate an intimate embodied convergence to propose a novel rule-based design framework for creating organic architectures composed of swarm-based intelligent components. Furthermore, the research boldly claims that Interactive Architecture should emerge as the next truly Organic Architecture. As the world and society are dynamically changing, especially in this digital era, the research dares to challenge the Utilitas, Firmitas, and Venustas of the traditional architectural Weltanschauung, and rejects them by adopting the novel notion that architecture should be dynamic, fluid, and interactive. This project reflects a trajectory from the 1960’s with the advent of the avant-garde architectural design group, Archigram, and its numerous intriguing and pioneering visionary projects. Archigram’s non-standard, mobile, and interactive projects profoundly influenced a new generation of architects to explore the connection between technology and their architectural projects. This research continues this trend of exploring novel design thinking and the framework of Interactive Architecture by discovering the interrelationship amongst three major topics: “Computation”, “Embodiment”, and “Biology”. The project aims to elucidate pioneering research combining these three topics in one discourse: “Bio-inspired digital architectural design”. These three major topics will be introduced in this Summary.   “Computation”, is any type of calculation that includes both arithmetical and nonarithmetical steps and follows a well-defined model understood and described as, for example, an algorithm. But, in this research, refers to the use of data storage, parametric design application, and physical computing for developing informed architectural designs. “Form” has always been the most critical focus in architectural design, and this focus has also been a major driver behind the application computational design in Architecture. Nonetheless, this research will interpret the term “Form” in architecture as a continual “information processor” rather than the result of information processing. In other words, “Form” should not be perceived only as an expressive appearance based computational outcome but rather as a real-time process of information processing, akin to organic “Formation”. Architecture embodying kinetic ability for adjusting or changing its shape with the ability to process the surroundings and feedback in accordance with its free will with an inherent interactive intelligent movement of a living body. Additionally, it is also crucial to address the question of whether computational technologies are being properly harnessed, if they are only used for form-generating purposes in architecture design, or should this be replaced with real-time information communication and control systems to produce interactive architectures, with embodied computation abilities?   “Embodiment” in the context of this research is embedded in Umberto Eco’s vision on Semiotics, theories underlying media studies in Marshall McLuhan’s “Body Extension” (McLuhan, 1964), the contemporary philosophical thought of “Body Without Organs” (Gilles Deleuze and FĂ©lix Guattari, 1983), the computational Logic of ‘Swarm Behavior’ and the philosophical notion of “Monadology” proposed by Gottfried Leibniz (Leibniz, 1714). Embodied computation and design are predominant today within the wearable computing and smart living domains, which combine Virtual and Real worlds. Technical progress and prowess in VR development also contribute to advancing 3D smart architectural design and display solutions. The proposed ‘Organic body-like architectural spaces’ emphasize upon the realization of a body-like interactive space. Developing Interactive Architecture will imply eliciting the collective intelligence prevalent in nature and the virtual world of Big Data. Interactive Architecture shall thus embody integrated Information exchange protocols and decision-making systems in order to possess organic body-like qualities.   “Biology”, in this research explores biomimetic principles intended to create purposedriven kinetic and organic architecture. This involves a detailed study/critique of organic architecture, generating organic shapes, performance optimization based digital fabrication techniques and kinetic systems. A holistic bio-inspired architecture embodies multiple performance criteria akin to natural systems, which integrate structural, infrastructure performances throughout the growth of an organic body. Such a natural morphogenesis process of architectural design explores what Janine M. Benyus described as “learning the natural process”. Profoundly influenced by the processes behind morphogenesis, the research further explores Evolutionary Development Biology (Evo-Devo) explaining how embryological regulation strongly affect the resulting formations. Evo-Devo in interactive architecture implies the development of architecture based on three fundamental principles: “Simple to Complex”, “Geometric Information Distribution”, and “On/Off Switch and Trigger.” The research seeks to create a relatively intelligent architectural body, and the tactile interactive spatial environment by applying the extracted knowledge from the study of the aforementioned principles of Evo-Devo in the following fashion: A. Extract a Self-Similar Componential System based approach from the “Simple to Complex” principle of Evo-Devo B. Extract the idea of “Collective Intelligence” from “Geometric information Distribution” principle of Evo-Devo C. Extract the principle of “Assembly Regulation” from “On/Off switch and trigger” principle of Evo-Devo The “HyperCell” research, through an elaborate investigation on the three aforementioned topics, develops a design framework for developing real-time adaptive spatial systems. HyperCell does this, by developing a system of transformable cubic elements which can self-organize, adapt and interact in real-time. These Hypercells shall comprise an organic space which can adjust itself in relation to our human bodies. The furniture system is literally reified and embodied to develop an intra-active space that proactively provokes human movement. The space thus acquires an emotive dimension and can become your pet, partner, or even friend, and might also involve multiple usabilities of the same space. The research and its progression were also had actively connected with a 5-year collaborative European Culture project: “MetaBody”. The research thus involves exploration of Interactive Architecture from the following perspectives: architectural design, digital architectural history trajectory, computational technology, philosophical discourse related to the embodiment, media and digital culture, current VR and body-related technology, and Evolutionary Developmental Biology. “HyperCell” will encourage young architects to pursue interdisciplinary design initiatives via the fusion of computational design, embodiment, and biology for developing bio-inspired organic architectures

    Enhancing the use of online 3d multimedia content through the analysis of user interactions

    Get PDF
    De plus en plus de contenus 3D interactifs sont disponibles sur la toile. Visualiser et manipuler ces contenus 3D en temps rĂ©el, de façon naturelle et intuitive, devient donc une nĂ©cessitĂ©. Les applications visĂ©es sont nombreuses : le e-commerce, l'Ă©ducation et la formation en ligne, la conception, ou l'architecture dans le contexte par exemple de musĂ©es virtuels ou de communautĂ©s virtuelles. L'utilisation de contenus 3D en ligne ne propose pas de remplacer les contenus traditionnels, tels que les textes, les images ou les vidĂ©os, mais plutĂŽt d'utiliser la 3D en complĂ©ment, pour enrichir ces contenus. La toile est dĂ©sormais une plate-forme oĂč les contenus hypertexte, hypermĂ©dia, et 3D sont simultanĂ©ment disponibles pour les utilisateurs. Cette utilisation des contenus 3D pose cependant deux questions principales. Tout d'abord, les interactions 3D sont souvent lourdes puisqu'elles comprennent de nombreux degrĂ©s de libertĂ©; la navigation dans les contenus 3D peut s'en trouver inefficace et lente. Nous abordons ce problĂšme en proposant un nouveau paradigme basĂ© sur l'analyse des interactions (crowdsourcing). En analysant les interactions d'utilisateurs 3D, nous identifions des rĂ©gions d'intĂ©rĂȘt (ROI), et gĂ©nĂ©rons des recommandations pour les utilisateurs suivants. Ces recommandations permettent Ă  la fois de rĂ©duire le temps d'interaction pour identifier une ROI d'un objet 3D et Ă©galement de simplifier les interactions 3D nĂ©cessaires. De plus, les scĂšnes ou objets 3D contiennent une information visuelle riche. Les sites Web traditionnels contiennent, eux, principalement des informations descriptives (textuelles) ainsi que des hyperliens pour permettre la navigation. Des sites contenants d'une part de l'information textuelle, et d'autre part de l'information 3D peuvent s'avĂ©rer difficile Ă  apprĂ©hender pour les utilisateurs. Pour permettre une navigation cohĂ©rente entre les informations 3D et textuelles, nous proposons d'utiliser le crowdsourcing pour la construction d'associations sĂ©mantiques entre le texte et la visualisation en 3D. Les liens produits sont proposĂ©s aux utilisateurs suivants pour naviguer facilement vers un point de vue d'un objet 3D associĂ© Ă  un contenu textuel. Nous Ă©valuons ces deux mĂ©thodes par des Ă©tudes expĂ©rimentales. Les Ă©valuations montrent que les recommandations rĂ©duisent le temps d'interaction 3D. En outre, les utilisateurs apprĂ©cient l'association sĂ©mantique proposĂ©e, c'est-Ă -dire, une majoritĂ© d'utilisateurs indique que les recommandations ont Ă©tĂ© utiles pour eux, et prĂ©fĂšrent la navigation en 3D proposĂ©e qui consiste Ă  utiliser les liens sĂ©mantiques ainsi que la souris par rapport Ă  des interactions utilisant seulement la souris. ABSTRACT : Recent years have seen the development of interactive 3D graphics on the Web. The ability to visualize and manipulate 3D content in real time seems to be the next evolution of the Web for a wide number of application areas such as e-commerce, education and training, architecture design, virtual museums and virtual communities. The use of online 3D graphics in these application domains does not mean to substitute traditional web content of texts, images and videos, but rather acts as a complement for it. The Web is now a platform where hypertext, hypermedia, and 3D graphics are simultaneously available to users. This use of online 3D graphics, however, poses two main issues. First, since 3D interactions are cumbersome as they provide numerous degrees of freedom, 3D browsing may be inefficient. We tackle this problem by proposing a new paradigm based on crowdsourcing to ease online 3D interactions, that consists of analyzing 3D user interactions to identify Regions of Interest (ROIs), and generating recommendations to subsequent users. The recommendations both reduce 3D browsing time and simplify 3D interactions. Second, 3D graphics contain purely rich visual information of the concepts. On the other hand, traditional websites mainly contain descriptive information (text) with hyperlinks as navigation means. The problem is that viewing and interacting with the websites that use two very different mediums (hypertext and 3D graphics) may be complicated for users. To address this issue, we propose to use crowdsourcing for building semantic associations between texts and 3D visualizations. The produced links are suggested to upcoming users so that they can readily locate 3D visualization associated with a textual content. We evaluate the proposed methods with experimental user studies. The evaluations show that the recommendations reduce 3D interaction time. Moreover, the results from the user study showed that our proposed semantic association is appreciated by users, that is, a majority of users assess that recommendations were helpful for them, and browsing 3D objects using both mouse interactions and the proposed links is preferred compared to having only mouse interactions
    corecore