1,981 research outputs found

    Adaptation of Binaural Processing in the Adult Brainstem Induced by Ambient Noise

    Get PDF
    Interaural differences in stimulus intensity and timing are major cues for sound localization. In mammals, these cues are first processed in the lateral and medial superior olive by interaction of excitatory and inhibitory synaptic inputs from ipsi- and contralateral cochlear nucleus neurons. To preserve sound localization acuity following changes in the acoustic environment, the processing of these binaural cues needs neuronal adaptation. Recent studies have shown that binaural sensitivity adapts to stimulation history within milliseconds, but the actual extent of binaural adaptation is unknown. In the current study, we investigated long-term effects on binaural sensitivity using extracellular in vivo recordings from single neurons in the dorsal nucleus of the lateral lemniscus that inherit their binaural properties directly from the lateral and medial superior olives. In contrast to most previous studies, we used a noninvasive approach to influence this processing. Adult gerbils were exposed for 2 weeks to moderate noise with no stable binaural cue. We found monaural response properties to be unaffected by this measure. However, neuronal sensitivity to binaural cues was reversibly altered for a few days. Computational models of sensitivity to interaural time and level differences suggest that upregulation of inhibition in the superior olivary complex can explain the electrophysiological data

    Excitatory postsynaptic potentials in rat neocortical neurons in vitro. III. Effects of a quinoxalinedione non-NMDA receptor antagonist

    Get PDF
    1. Intracellular microelectrodes were used to obtain recordings from neurons in layer II/III of rat frontal cortex. A bipolar electrode positioned in layer IV of the neocortex was used to evoke postsynaptic potentials. Graded series of stimulation were employed to selectively activate different classes of postsynaptic responses. The sensitivity of postsynaptic potentials and iontophoretically applied neurotransmitters to the non-N-methyl-D-asparate (NMDA) antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) was examined. 2. As reported previously, low-intensity electrical stimulation of cortical layer IV evoked short-latency early excitatory postsynaptic potentials (eEPSPs) in layer II/III neurons. CNQX reversibly antagonized eEPSPs in a dose-dependent manner. Stimulation at intensities just subthreshold for activation of inhibitory postsynaptic potentials (IPSPs) produced long-latency (10 to 40-ms) EPSPs (late EPSPs or 1EPSPs). CNQX was effective in blocking 1EPSPs. 3. With the use of stimulus intensities at or just below threshold for evoking an action potential, complex synaptic potentials consisting of EPSP-IPSP sequences were observed. Both early, Cl(-)-dependent and late, K(+)-dependent IPSPs were reduced by CNQX. This effect was reversible on washing. This disinhibition could lead to enhanced excitability in the presence of CNQX. 4. Iontophoretic application of quisqualate produced a membrane depolarization with superimposed action potentials, whereas NMDA depolarized the membrane potential and evoked bursts of action potentials. At concentrations up to 5 microM, CNQX selectively antagonized quisqualate responses. NMDA responses were reduced by 10 microM CNQX. D-Serine (0.5-2 mM), an agonist at the glycine regulatory site on the NMDA receptor, reversed the CNQX depression of NMDA responses

    Decoding neural responses to temporal cues for sound localization

    Get PDF
    The activity of sensory neural populations carries information about the environment. This may be extracted from neural activity using different strategies. In the auditory brainstem, a recent theory proposes that sound location in the horizontal plane is decoded from the relative summed activity of two populations in each hemisphere, whereas earlier theories hypothesized that the location was decoded from the identity of the most active cells. We tested the performance of various decoders of neural responses in increasingly complex acoustical situations, including spectrum variations, noise, and sound diffraction. We demonstrate that there is insufficient information in the pooled activity of each hemisphere to estimate sound direction in a reliable way consistent with behavior, whereas robust estimates can be obtained from neural activity by taking into account the heterogeneous tuning of cells. These estimates can still be obtained when only contralateral neural responses are used, consistently with unilateral lesion studies. DOI: http://dx.doi.org/10.7554/eLife.01312.001

    Heterogeneous Expression of T-type Ca2+ Channels Defines Different Neuronal Populations in the Inferior Olive of the Mouse

    Get PDF
    textabstractThe neurons in the inferior olive express subthreshold oscillations in their membrane potential. This oscillatory activity is known to drive synchronous activity in the cerebellar cortex and plays a role in motor learning and motor timing. In the past years, it was commonly thought that olivary neurons belonged to a unique population of oscillating units and that oscillation properties were exclusively dependent on network settings and/or synaptic inputs. The origin of olivary oscillations is now known to be a local phenomenon and is generated by a combination of conductances. In the present work, we show the existence of at least two neuronal populations that can be distinguished on the basis of the presence or absence of low-voltage activated Ca2+ channels. The expression of this channel determines the oscillatory behavior of olivary neurons. Furthermore, the number of cells that express this channel is different between sub nuclei of the inferior olive. These findings clearly indicate the functional variability within and between olivary sub nuclei

    Neurones glycinergiques et transmission inhibitrice dans les noyaux cérébelleux

    Get PDF
    The cerebellum is composed of a three-layered cortex and of nuclei and is responsible for the learned fine control of posture and movements. I combined a genetic approach (based on the use of transgenic mouse lines) with anatomical tracings, immunohistochemical stainings, electrophysiological recordings and optogenetic stimulations to establish the distinctive characteristics of the inhibitory neurons of the cerebellar nuclei and to detail their connectivity and their role in the cerebellar circuitry.We showed that the glycinergic inhibitory neurons of the cerebellar nuclei constitute a distinct neuronal population and are characterized by their mixed inhibitory GABAergic/glycinergic phenotype. Those inhibitory neurons are also distinguished by their axonal plexus which includes a local arborization with the cerebellar nuclei where they contact principal output neurons and a projection to the granular layer of the cerebellar cortex where they end onto Golgi cells dendrites. Finally, the inhibitory neurons of the cerebellar nuclei receive inhibitory afferents from Purkinje cells and may be contacted by mossy fibers or climbing fibers.We provided the first evidence of functional mixed transmission in the cerebellar nuclei and the first demonstration of a mixed inhibitory nucleo-cortical projection. Overall, our data establish the inhibitory neurons as the third cellular component of the cerebellar nuclei. Their importance in the modular organization of the cerebellum and their impact on sensory-motor integration need to be confirmed by optogenetic experiments in vivo.Le cervelet, composé d'un cortex et de noyaux, est responsable du contrôle moteur fin des mouvements et de la posture. En combinant une approche génétique (basée sur l'utilisation de lignées de souris transgéniques) avec des traçages anatomiques, des marquages immunohistochimiques et des expériences d'électrophysiologie et d'optogénétique, nous établissons les caractères distinctifs des neurones inhibiteurs des noyaux cérébelleux et en détaillons la connectivité ainsi que les fonctions dans le circuit cérébelleux. Les neurones inhibiteurs glycinergiques des noyaux profonds constituent une population de neurones distincts des autres types cellulaires identifiables par leur phénotype inhibiteur mixte GABAergique/glycinergique. Ces neurones se distinguent également par leur plexus axonal qui comporte une arborisation locale dans les noyaux cérébelleux où ils contactent les neurones principaux et une projection vers le cortex cérébelleux où ils contactent les cellules de Golgi. Ces neurones inhibiteurs reçoivent également des afférences inhibitrices des cellules de Purkinje et pourraient être contactés par les fibres moussues ou les fibres grimpantes.Nous apportons ainsi la première étude d'une transmission mixte fonctionnelle par les neurones inhibiteurs des noyaux cérébelleux, projetant à la fois dans les noyaux et le cortex cérébelleux. L'ensemble de nos données établissent les neurones inhibiteurs mixtes des noyaux cérébelleux comme la troisième composante cellulaire des noyaux profonds. Leur importance dans l'organisation modulaire du cervelet, ainsi que leur impact sur l'intégration sensori-motrice, devront être confirmés par des études optogénétiques in vivo

    Interaural time difference processing in the mammalian medial superior olive

    Get PDF
    The dominant cue for localization of low-frequency sounds are microsecond differences in the time-of-arrival of sounds at the two ears [interaural time difference (ITD)]. In mammals, ITD sensitivity is established in the medial superior olive (MSO) by coincidence detection of excitatory inputs from both ears. Hence the relative delay of the binaural inputs is crucial for adjusting ITD sensitivity in MSO cells. How these delays are constructed is, however, still unknown. Specifically, the question of whether inhibitory inputs are involved in timing the net excitation in MSO cells, and if so how, is controversial. These inhibitory inputs derive from the nuclei of the trapezoid body, which have physiological and structural specializations for high-fidelity temporal transmission, raising the possibility that well timed inhibition is involved in tuning ITD sensitivity. Here, we present physiological and pharmacological data from in vivo extracellular MSO recordings in anesthetized gerbils. Reversible blockade of synaptic inhibition by iontophoretic application of the glycine antagonist strychnine increased firing rates and significantly shifted ITD sensitivity of MSO neurons. This indicates that glycinergic inhibition plays a major role in tuning the delays of binaural excitation. We also tonically applied glycine, which lowered firing rates but also shifted ITD sensitivity in a way analogous to strychnine. Hence tonic glycine application experimentally decoupled the effect of inhibition from the timing of its inputs. We conclude that, for proper ITD processing, not only is inhibition necessary, but it must also be precisely timed
    corecore