194,326 research outputs found

    Irreversible phase transitions induced by an oscillatory input

    Full text link
    A novel kind of irreversible phase transitions (IPT's) driven by an oscillatory input parameter is studied by means of computer simulations. Second order IPT's showing scale invariance in relevant dynamic critical properties are found to belong to the universality class of directed percolation. In contrast, the absence of universality is observed for first order IPT's.Comment: 18 pages (Revtex); 8 figures (.ps); submitted to Europhysics Letters, December 9th, 199

    Recursion Aware Modeling and Discovery For Hierarchical Software Event Log Analysis (Extended)

    Get PDF
    This extended paper presents 1) a novel hierarchy and recursion extension to the process tree model; and 2) the first, recursion aware process model discovery technique that leverages hierarchical information in event logs, typically available for software systems. This technique allows us to analyze the operational processes of software systems under real-life conditions at multiple levels of granularity. The work can be positioned in-between reverse engineering and process mining. An implementation of the proposed approach is available as a ProM plugin. Experimental results based on real-life (software) event logs demonstrate the feasibility and usefulness of the approach and show the huge potential to speed up discovery by exploiting the available hierarchy.Comment: Extended version (14 pages total) of the paper Recursion Aware Modeling and Discovery For Hierarchical Software Event Log Analysis. This Technical Report version includes the guarantee proofs for the proposed discovery algorithm

    Rationality and dynamic consistency under risk and uncertainty

    Get PDF
    For choice with deterministic consequences, the standard rationality hypothesis is ordinality - i.e., maximization of a weak preference ordering. For choice under risk (resp. uncertainty), preferences are assumed to be represented by the objectively (resp. subjectively) expected value of a von Neumann{Morgenstern utility function. For choice under risk, this implies a key independence axiom; under uncertainty, it implies some version of Savage's sure thing principle. This chapter investigates the extent to which ordinality, independence, and the sure thing principle can be derived from more fundamental axioms concerning behaviour in decision trees. Following Cubitt (1996), these principles include dynamic consistency, separability, and reduction of sequential choice, which can be derived in turn from one consequentialist hypothesis applied to continuation subtrees as well as entire decision trees. Examples of behavior violating these principles are also reviewed, as are possible explanations of why such violations are often observed in experiments

    Rich Interfaces for Dependability: Compositional Methods for Dynamic Fault Trees and Arcade models

    Get PDF
    This paper discusses two behavioural interfaces for reliability analysis: dynamic fault trees, which model the system reliability in terms of the reliability of its components and Arcade, which models the system reliability at an architectural level. For both formalisms, the reliability is analyzed by transforming the DFT or Arcade model to a set of input-output Markov Chains. By using compositional aggregation techniques based on weak bisimilarity, significant reductions in the state space can be obtained

    A numerical study of the development of bulk scale-free structures upon growth of self-affine aggregates

    Full text link
    During the last decade, self-affine geometrical properties of many growing aggregates, originated in a wide variety of processes, have been well characterized. However, little progress has been achieved in the search of a unified description of the underlying dynamics. Extensive numerical evidence has been given showing that the bulk of aggregates formed upon ballistic aggregation and random deposition with surface relaxation processes can be broken down into a set of infinite scale invariant structures called "trees". These two types of aggregates have been selected because it has been established that they belong to different universality classes: those of Kardar-Parisi-Zhang and Edward-Wilkinson, respectively. Exponents describing the spatial and temporal scale invariance of the trees can be related to the classical exponents describing the self-affine nature of the growing interface. Furthermore, those exponents allows us to distinguish either the compact or non-compact nature of the growing trees. Therefore, the measurement of the statistic of the process of growing trees may become a useful experimental technique for the evaluation of the self-affine properties of some aggregates.Comment: 19 pages, 5 figures, accepted for publication in Phys.Rev.

    Beginner Modeling Exercises

    Get PDF
    The goal of this paper written as part of the MIT Systems Dynamics in Education Project is to teach the reader how to distinguish between stocks and flows. A stock is an accumulation that is changed over time by inflows and outflows. The reader will gain intuition about stocks and flow through and extensive list of different examples and will practice modeling simple systems with constant flows. STELLA modeling examples include, but are not restricted to, skunks populations, landfills, a bank account and nuclear weapons. Educational levels: High school, Middle school, Undergraduate lower division, Undergraduate upper division
    corecore