19,062 research outputs found

    Suvorexant, an FDA-approved dual orexin receptor antagonist, reduces oxycodone self-administration and conditioned reinstatement in male and female rats

    Get PDF
    Background: The Department of Health and Human Services reports that prescription pain reliever (e.g., oxycodone) misuse was initiated by 4,400 Americans each day in 2019. Amid the opioid crisis, effective strategies to prevent and treat prescription opioid use disorder (OUD) are pressing. In preclinical models, the orexin system is recruited by drugs of abuse, and blockade of orexin receptors (OX receptors) prevents drug-seeking behavior. The present study sought to determine whether repurposing suvorexant (SUV), a dual OX receptor antagonist marketed for the treatment of insomnia, can treat two features of prescription OUD: exaggerated consumption and relapse.Methods: Male and female Wistar rats were trained to self-administer oxycodone (0.15 mg/kg, i. v., 8 h/day) in the presence of a contextual/discriminative stimulus (SD) and the ability of SUV (0–20 mg/kg, p. o.) to decrease oxycodone self-administration was tested. After self-administration testing, the rats underwent extinction training, after which we tested the ability of SUV (0 and 20 mg/kg, p. o.) to prevent reinstatement of oxycodone seeking elicited by the SD.Results: The rats acquired oxycodone self-administration and intake was correlated with the signs of physical opioid withdrawal. Additionally, females self-administered approximately twice as much oxycodone as males. Although SUV had no overall effect on oxycodone self-administration, scrutiny of the 8-h time-course revealed that 20 mg/kg SUV decreased oxycodone self-administration during the first hour in males and females. The oxycodone SD elicited strong reinstatement of oxycodone-seeking behavior that was significantly more robust in females. Suvorexant blocked oxycodone seeking in males and reduced it in females.Conclusions: These results support the targeting of OX receptors for the treatment for prescription OUD and repurposing SUV as pharmacotherapy for OUD

    When to be critical? Performance and evolvability in different regimes of neural Ising agents

    Full text link
    It has long been hypothesized that operating close to the critical state is beneficial for natural, artificial and their evolutionary systems. We put this hypothesis to test in a system of evolving foraging agents controlled by neural networks that can adapt agents' dynamical regime throughout evolution. Surprisingly, we find that all populations that discover solutions, evolve to be subcritical. By a resilience analysis, we find that there are still benefits of starting the evolution in the critical regime. Namely, initially critical agents maintain their fitness level under environmental changes (for example, in the lifespan) and degrade gracefully when their genome is perturbed. At the same time, initially subcritical agents, even when evolved to the same fitness, are often inadequate to withstand the changes in the lifespan and degrade catastrophically with genetic perturbations. Furthermore, we find the optimal distance to criticality depends on the task complexity. To test it we introduce a hard and simple task: for the hard task, agents evolve closer to criticality whereas more subcritical solutions are found for the simple task. We verify that our results are independent of the selected evolutionary mechanisms by testing them on two principally different approaches: a genetic algorithm and an evolutionary strategy. In summary, our study suggests that although optimal behaviour in the simple task is obtained in a subcritical regime, initializing near criticality is important to be efficient at finding optimal solutions for new tasks of unknown complexity.Comment: arXiv admin note: substantial text overlap with arXiv:2103.1218

    Neuroanatomical and gene expression features of the rabbit accessory olfactory system. Implications of pheromone communication in reproductive behaviour and animal physiology

    Get PDF
    Mainly driven by the vomeronasal system (VNS), pheromone communication is involved in many species-specific fundamental innate socio-sexual behaviors such as mating and fighting, which are essential for animal reproduction and survival. Rabbits are a unique model for studying chemocommunication due to the discovery of the rabbit mammary pheromone, but paradoxically there has been a lack of knowledge regarding its VNS pathway. In this work, we aim at filling this gap by approaching the system from an integrative point of view, providing extensive anatomical and genomic data of the rabbit VNS, as well as pheromone-mediated reproductive and behavioural studies. Our results build strong foundation for further translational studies which aim at implementing the use of pheromones to improve animal production and welfare

    A pilot investigation of differential hydroxymethylation levels in patient-derived neural stem cells implicates altered cortical development in bipolar disorder

    Get PDF
    IntroductionBipolar disorder (BD) is a chronic mental illness characterized by recurrent episodes of mania and depression and associated with social and cognitive disturbances. Environmental factors, such as maternal smoking and childhood trauma, are believed to modulate risk genotypes and contribute to the pathogenesis of BD, suggesting a key role in epigenetic regulation during neurodevelopment. 5-hydroxymethylcytosine (5hmC) is an epigenetic variant of particular interest, as it is highly expressed in the brain and is implicated in neurodevelopment, and psychiatric and neurological disorders.MethodsInduced pluripotent stem cells (iPSCs) were generated from the white blood cells of two adolescent patients with bipolar disorder and their same-sex age-matched unaffected siblings (n = 4). Further, iPSCs were differentiated into neuronal stem cells (NSCs) and characterized for purity using immuno-fluorescence. We used reduced representation hydroxymethylation profiling (RRHP) to perform genome-wide 5hmC profiling of iPSCs and NSCs, to model 5hmC changes during neuronal differentiation and assess their impact on BD risk. Functional annotation and enrichment testing of genes harboring differentiated 5hmC loci were performed with the online tool DAVID.ResultsApproximately 2 million sites were mapped and quantified, with the majority (68.8%) located in genic regions, with elevated 5hmC levels per site observed for 3’ UTRs, exons, and 2-kb shorelines of CpG islands. Paired t-tests of normalized 5hmC counts between iPSC and NSC cell lines revealed global hypo-hydroxymethylation in NSCs and enrichment of differentially hydroxymethylated sites within genes associated with plasma membrane (FDR = 9.1 × 10−12) and axon guidance (FDR = 2.1 × 10−6), among other neuronal processes. The most significant difference was observed for a transcription factor binding site for the KCNK9 gene (p = 8.8 × 10−6), encoding a potassium channel protein involved in neuronal activity and migration. Protein–protein-interaction (PPI) networking showed significant connectivity (p = 3.2 × 10−10) between proteins encoded by genes harboring highly differentiated 5hmC sites, with genes involved in axon guidance and ion transmembrane transport forming distinct sub-clusters. Comparison of NSCs of BD cases and unaffected siblings revealed additional patterns of differentiation in hydroxymethylation levels, including sites in genes with functions related to synapse formation and regulation, such as CUX2 (p = 2.4 × 10−5) and DOK-7 (p = 3.6 × 10−3), as well as an enrichment of genes involved in the extracellular matrix (FDR = 1.0 × 10−8).DiscussionTogether, these preliminary results lend evidence toward a potential role for 5hmC in both early neuronal differentiation and BD risk, with validation and more comprehensive characterization to be achieved through follow-up study

    OLIG2 neural progenitor cell development and fate in Down syndrome

    Full text link
    Down syndrome (DS) is caused by triplication of human chromosome 21 (HSA21) and is the most common genetic form of intellectual disability. It is unknown precisely how triplication of HSA21 results in the intellectual disability, but it is thought that the global transcriptional dysregulation caused by trisomy 21 perturbs multiple aspects of neurodevelopment that cumulatively contribute to its etiology. While the characteristics associated with DS can arise from any of the genes triplicated on HSA21, in this work we focus on oligodendrocyte transcription factor 2 (OLIG2). The progeny of neural progenitor cells (NPCs) expressing OLIG2 are likely to be involved in many of the cellular changes underlying the intellectual disability in DS. To explore the fate of OLIG2+ neural progenitors, we took advantage of two distinct models of DS, the Ts65Dn mouse model and induced pluripotent stem cells (iPSCs) derived from individuals with DS. Our results from these two systems identified multiple perturbations in development in the cellular progeny of OLIG2+ NPCs. In Ts65Dn, we identified alterations in neurons and glia derived from the OLIG2 expressing progenitor domain in the ventral spinal cord. There were significant differences in the number of motor neurons and interneurons present in the trisomic lumbar spinal cord depending on age of the animal pointing both to a neurodevelopment and a neurodegeneration phenotype in the Ts65Dn mice. Of particular note, we identified changes in oligodendrocyte (OL) maturation in the trisomic mice that are dependent on spatial location and developmental origin. In the dorsal corticospinal tract, there were significantly fewer mature OLs in the trisomic mice, and in the lateral funiculus we observed the opposite phenotype with more mature OLs being present in the trisomic animals. We then transitioned our studies into iPSCs where we were able to pattern OLIG2+ NPCs to either a spinal cord-like or a brain-like identity and study the OL lineage that differentiated from each progenitor pool. Similar to the region-specific dysregulation found in the Ts65Dn spinal cord, we identified perturbations in trisomic OLs that were dependent on whether the NPCs had been patterned to a brain-like or spinal cord-like fate. In the spinal cord-like NPCs, there was no difference in the proportion of cells expressing either OLIG2 or NKX2.2, the two transcription factors whose co-expression is essential for OL differentiation. Conversely, in the brain-like NPCs, there was a significant increase in OLIG2+ cells in the trisomic culture and a decrease in NKX2.2 mRNA expression. We identified a sonic hedgehog (SHH) signaling based mechanism underlying these changes in OLIG2 and NKX2.2 expression in the brain-like NPCs and normalized the proportion of trisomic cells expressing the transcription factors to euploid levels by modulating the activity of the SHH pathway. Finally, we continued the differentiation of the brain-like and spinal cord-like NPCs to committed OL precursor cells (OPCs) and allowed them to mature. We identified an increase in OPC production in the spinal cord-like trisomic culture which was not present in the brain-like OPCs. Conversely, we identified a maturation deficit in the brain-like trisomic OLs that was not present in the spinal cord-like OPCs. These results underscore the importance of regional patterning in characterizing changes in cell differentiation and fate in DS. Together, the findings presented in this work contribute to the understanding of the cellular and molecular etiology of the intellectual disability in DS and in particular the contribution of cells differentiated from OLIG2+ progenitors

    Therapeutic effect of mesenchymal stem cell derived extracellular vesicles on 3D model of oligocortical spheroids

    Get PDF
    Extracellular vesicles (EVs) are released by nearly every cell type and are an important structure in inter-cellular communication. Abnormal EV signaling is found in many conditions including ischemia, Alzheimer’s Disease (AD) and Down Syndrome (DS). However, EVs from stem cells from healthy animals have recently emerged as a possible therapeutic intervention to address a variety of neurological conditions. Mesenchymal stromal cell-derived (MSCs) extracellular vesicles from the bone marrow of young healthy monkeys contain microRNAs and proteins and previous studies have shown that MSC-EV treatment mitigates inflammation and oxidative stress, promotes myelination, and improves functional recovery in a rhesus monkey model of cortical injury. EVs have also been shown to reduce AD pathology in mouse models by promoting anti-inflammatory processes and slowing the progression of AD. While AD currently effects over 6 million people in the United States, individuals with DS are disproportionately affected by early onset AD. Therefore, investigating the efficacy of MSC-EVs as a potential therapeutic to mitigate AD like pathology in DS is critical. Accordingly, the current study aims to explore the application of EVs on 3D human brain models of DS, ischemia, and oxygen glucose deprivation (OGD). We generated human oligocortical spheroids (OLS) containing neurons, astrocytes and oligodendrocytes allowing investigation of the effects of the EVs in human, physiologically relevant conditions. First, with OLS in ischemic conditions results were insufficient in demonstrating the recapitulation of cell death and oxidative damage associated with ischemia in vivo. Consequently, the inconsistency of the model prevented us from comprehensive evaluation of the therapeutic potential of EVs in OGD model in OLS. However, we next used DS-derived OLS generated from isogenic induced pluripotent stem cell (iPSCs) lines to evaluate the efficacy of EV treatment in DS. Trisomic OLS display significantly higher levels of amyloid beta (Aβ40 and Aβ42) depositions in both the soluble and insoluble fractions. Additionally, trisomic OLS are consistently smaller than their euploid counterparts, and have elevated levels of cleaved-caspase 3 (CC3) detection indicating more cell death. When treated with EVs, trisomic OLS demonstrated greater preserved cortical volume, significantly decreased levels of Aβ40 and Aβ42 in both fractions, and significant reduction in cell death compared to the untreated trisomic OLS. These results suggest that EVs alleviated the AD-related pathology in DS-derived OLS. Evaluation of the markers of cortical layer neurons demonstrated significantly higher counts of neurons expressing deep and superficial layer markers, suggesting that EVs contributed to greater preserved cortical volume of trisomic OLS by promoting neurogenesis and alleviating trisomy-induced deficits. Our studies show for the first time the efficacy of MSC-EVs in mitigating DS and AD-related cellular phenotypes and pathological depositions in human OLS. Furthermore, oligocortical spheroids present a unique tool for a target validation of potential therapeutics

    Transcriptional networks of transient cell states during human prefrontal cortex development

    Get PDF
    The human brain is divided into various anatomical regions that control and coordinate unique functions. The prefrontal cortex (PFC) is a large brain region that comprises a range of neuronal and non-neuronal cell types, sharing extensive interconnections with subcortical areas, and plays a critical role in cognition and memory. A timely appearance of distinct cell types through embryonic development is crucial for an anatomically perfect and functional brain. Direct tracing of cell fate development in the human brain is not possible, but single-cell transcriptome sequencing (scRNA-seq) datasets provide the opportunity to dissect cellular heterogeneity and its molecular regulators. Here, using scRNA-seq data of human PFC from fetal stages, we elucidate distinct transient cell states during PFC development and their underlying gene regulatory circuitry. We further identified that distinct intermediate cell states consist of specific gene regulatory modules essential to reach terminal fate using discrete developmental paths. Moreover, using in silico gene knock-out and over-expression analysis, we validated crucial gene regulatory components during the lineage specification of oligodendrocyte progenitor cells. Our study illustrates unique intermediate states and specific gene interaction networks that warrant further investigation for their functional contribution to typical brain development and discusses how this knowledge can be harvested for therapeutic intervention in challenging neurodevelopmental disorders

    In vitro investigation of the effect of disulfiram on hypoxia induced NFκB, epithelial to mesenchymal transition and cancer stem cells in glioblastoma cell lines

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Glioblastoma multiforme (GBM) is one of the most aggressive and lethal cancers with a poor prognosis. Advances in the treatment of GBM are limited due to several resistance mechanisms and limited drug delivery into the central nervous system (CNS) compartment by the blood-brain barrier (BBB) and by actions of the normal brain to counteract tumour-targeting medications. Hypoxia is common in malignant brain tumours such as GBM and plays a significant role in tumour pathobiology. It is widely accepted that hypoxia is a major driver of GBM malignancy. Although it has been confirmed that hypoxia induces GBM stem-like-cells (GSCs), which are highly invasive and resistant to all chemotherapeutic agents, the detailed molecular pathways linking hypoxia, GSC traits and chemoresistance remain obscure. Evidence shows that hypoxia induces cancer stem cell phenotypes via epithelial-to-mesenchymal transition (EMT), promoting therapeutic resistance in most cancers, including GBM. This study demonstrated that spheroid cultured GBM cells consist of a large population of hypoxic cells with CSC and EMT characteristics. GSCs are chemo-resistant and displayed increased levels of HIFs and NFκB activity. Similarly, the hypoxia cultured GBM cells manifested GSC traits, chemoresistance and invasiveness. These results suggest that hypoxia is responsible for GBM stemness, chemoresistance and invasiveness. GBM cells transfected with nuclear factor kappa B-p65 (NFκB-p65) subunit exhibited CSC and EMT markers indicating the essential role of NFκB in maintaining GSC phenotypes. The study also highlighted the significance of NFκB in driving chemoresistance, invasiveness, and the potential role of NFκB as the central regulator of hypoxia-induced stemness in GBM cells. GSC population has the ability of self-renewal, cancer initiation and development of secondary heterogeneous cancer. The very poor prognosis of GBM could largely be attributed to the existence of GSCs, which promote tumour propagation, maintenance, radio- and chemoresistance and local infiltration. In this study, we used Disulfiram (DS), a drug used for more than 65 years in alcoholism clinics, in combination with copper (Cu) to target the NFκB pathway, reverse chemoresistance and block invasion in GSCs. The obtained results showed that DS/Cu is highly cytotoxic to GBM cells and completely eradicated the resistant CSC population at low dose levels in vitro. DS/Cu inhibited the migration and invasion of hypoxia-induced CSC and EMT like GBM cells at low nanomolar concentrations. DS is an FDA approved drug with low toxicity to normal tissues and can pass through the BBB. Further research may lead to the quick translation of DS into cancer clinics and provide new therapeutic options to improve treatment outcomes in GBM patients

    Estudo da remodelagem reversa miocárdica através da análise proteómica do miocárdio e do líquido pericárdico

    Get PDF
    Valve replacement remains as the standard therapeutic option for aortic stenosis patients, aiming at abolishing pressure overload and triggering myocardial reverse remodeling. However, despite the instant hemodynamic benefit, not all patients show complete regression of myocardial hypertrophy, being at higher risk for adverse outcomes, such as heart failure. The current comprehension of the biological mechanisms underlying an incomplete reverse remodeling is far from complete. Furthermore, definitive prognostic tools and ancillary therapies to improve the outcome of the patients undergoing valve replacement are missing. To help abridge these gaps, a combined myocardial (phospho)proteomics and pericardial fluid proteomics approach was followed, taking advantage of human biopsies and pericardial fluid collected during surgery and whose origin anticipated a wealth of molecular information contained therein. From over 1800 and 750 proteins identified, respectively, in the myocardium and in the pericardial fluid of aortic stenosis patients, a total of 90 dysregulated proteins were detected. Gene annotation and pathway enrichment analyses, together with discriminant analysis, are compatible with a scenario of increased pro-hypertrophic gene expression and protein synthesis, defective ubiquitinproteasome system activity, proclivity to cell death (potentially fed by complement activity and other extrinsic factors, such as death receptor activators), acute-phase response, immune system activation and fibrosis. Specific validation of some targets through immunoblot techniques and correlation with clinical data pointed to complement C3 β chain, Muscle Ring Finger protein 1 (MuRF1) and the dual-specificity Tyr-phosphorylation regulated kinase 1A (DYRK1A) as potential markers of an incomplete response. In addition, kinase prediction from phosphoproteome data suggests that the modulation of casein kinase 2, the family of IκB kinases, glycogen synthase kinase 3 and DYRK1A may help improve the outcome of patients undergoing valve replacement. Particularly, functional studies with DYRK1A+/- cardiomyocytes show that this kinase may be an important target to treat cardiac dysfunction, provided that mutant cells presented a different response to stretch and reduced ability to develop force (active tension). This study opens many avenues in post-aortic valve replacement reverse remodeling research. In the future, gain-of-function and/or loss-of-function studies with isolated cardiomyocytes or with animal models of aortic bandingdebanding will help disclose the efficacy of targeting the surrogate therapeutic targets. Besides, clinical studies in larger cohorts will bring definitive proof of complement C3, MuRF1 and DYRK1A prognostic value.A substituição da válvula aórtica continua a ser a opção terapêutica de referência para doentes com estenose aórtica e visa a eliminação da sobrecarga de pressão, desencadeando a remodelagem reversa miocárdica. Contudo, apesar do benefício hemodinâmico imediato, nem todos os pacientes apresentam regressão completa da hipertrofia do miocárdio, ficando com maior risco de eventos adversos, como a insuficiência cardíaca. Atualmente, os mecanismos biológicos subjacentes a uma remodelagem reversa incompleta ainda não são claros. Além disso, não dispomos de ferramentas de prognóstico definitivos nem de terapias auxiliares para melhorar a condição dos pacientes indicados para substituição da válvula. Para ajudar a resolver estas lacunas, uma abordagem combinada de (fosfo)proteómica e proteómica para a caracterização, respetivamente, do miocárdio e do líquido pericárdico foi seguida, tomando partido de biópsias e líquidos pericárdicos recolhidos em ambiente cirúrgico. Das mais de 1800 e 750 proteínas identificadas, respetivamente, no miocárdio e no líquido pericárdico dos pacientes com estenose aórtica, um total de 90 proteínas desreguladas foram detetadas. As análises de anotação de genes, de enriquecimento de vias celulares e discriminativa corroboram um cenário de aumento da expressão de genes pro-hipertróficos e de síntese proteica, um sistema ubiquitina-proteassoma ineficiente, uma tendência para morte celular (potencialmente acelerada pela atividade do complemento e por outros fatores extrínsecos que ativam death receptors), com ativação da resposta de fase aguda e do sistema imune, assim como da fibrose. A validação de alguns alvos específicos através de immunoblot e correlação com dados clínicos apontou para a cadeia β do complemento C3, a Muscle Ring Finger protein 1 (MuRF1) e a dual-specificity Tyr-phosphoylation regulated kinase 1A (DYRK1A) como potenciais marcadores de uma resposta incompleta. Por outro lado, a predição de cinases a partir do fosfoproteoma, sugere que a modulação da caseína cinase 2, a família de cinases do IκB, a glicogénio sintase cinase 3 e da DYRK1A pode ajudar a melhorar a condição dos pacientes indicados para intervenção. Em particular, a avaliação funcional de cardiomiócitos DYRK1A+/- mostraram que esta cinase pode ser um alvo importante para tratar a disfunção cardíaca, uma vez que os miócitos mutantes responderam de forma diferente ao estiramento e mostraram uma menor capacidade para desenvolver força (tensão ativa). Este estudo levanta várias hipóteses na investigação da remodelagem reversa. No futuro, estudos de ganho e/ou perda de função realizados em cardiomiócitos isolados ou em modelos animais de banding-debanding da aorta ajudarão a testar a eficácia de modular os potenciais alvos terapêuticos encontrados. Além disso, estudos clínicos em coortes de maior dimensão trarão conclusões definitivas quanto ao valor de prognóstico do complemento C3, MuRF1 e DYRK1A.Programa Doutoral em Biomedicin

    Epilepsy Mortality: Leading Causes of Death, Co-morbidities, Cardiovascular Risk and Prevention

    Get PDF
    a reuptake inhibitor selectively prevents seizure-induced sudden death in the DBA/1 mouse model of sudden unexpected ... Bilateral lesions of the fastigial nucleus prevent the recovery of blood pressure following hypotension induced by ..
    corecore