249,415 research outputs found

    On the use of the l(2)-norm for texture analysis of polarimetric SAR data

    Get PDF
    In this paper, the use of the l2-norm, or Span, of the scattering vectors is suggested for texture analysis of polarimetric synthetic aperture radar (SAR) data, with the benefits that we need neither an analysis of the polarimetric channels separately nor a filtering of the data to analyze the statistics. Based on the product model, the distribution of the l2-norm is studied. Closed expressions of the probability density functions under the assumptions of several texture distributions are provided. To utilize the statistical properties of the l2-norm, quantities including normalized moments and log-cumulants are derived, along with corresponding estimators and estimation variances. Results on both simulated and real SAR data show that the use of statistics based on the l2-norm brings advantages in several aspects with respect to the normalized intensity moments and matrix variate log-cumulants.Peer ReviewedPostprint (published version

    Binary Patterns Encoded Convolutional Neural Networks for Texture Recognition and Remote Sensing Scene Classification

    Full text link
    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The d facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Binary Patterns encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Our final combination outperforms the state-of-the-art without employing fine-tuning or ensemble of RGB network architectures.Comment: To appear in ISPRS Journal of Photogrammetry and Remote Sensin

    Mapping seabed sediments of the Fulmar rMCZ

    Get PDF
    This report is on work undertaken for the JNCC under an Addendum to the Memorandum of Agreement dated 20 February 2014 between The Scottish Ministers, Natural Environment Research Council (NERC) and JNCC Support co. (JNCC). Under the terms of this Addendum JNCC requested that BGS carry out geostatistical analysis of sediment sample data from CEND 8/12 survey of Fulmar rMCZ in order to produce maps of sediment distribution in the site. A geostatistical analysis of the data is reported leading to the selection of a linear model of corregionalization for the composition of the sediment, based on the additive log-ratio transformation of data on mud, sand and gravel content. This model is then used for spatial prediction on a 250-m grid. At each grid node a prediction distribution is obtained, conditional on neighbouring data and the selected model. By sampling from this distribution, and back-transforming onto the original compositional simplex of the data, we obtain a conditional expectation for the proportions of sand, gravel and mud at each location, a 95% confidence interval for the value at each node, and the probability that each of the four sediment texture classes that underlie the EUNIS habitat classification is found at the node

    Testing Logselfsimilarity of Soil Particle Size Distribution: Simulation with Minimum Inputs

    Get PDF
    Particle size distribution (PSD) greatly influences other soil physical properties. A detailed textural analysis is time-consuming and expensive. Soil texture is commonly reported in terms of mass percentages of a small number of size fractions (typically, clay, silt and sand). A method to simulate the PSD from such a poor description or even from the poorest description, consisting in the mass percentages of only two soil size fractions, would be extremly useful for prediction purposes. The goal of this paper is to simulate soil PSDs from the minimum number of inputs, i.e., two and three textural fraction contents, by using a logselfsimilar model and an iterated function system constructed with these data. High quality data on 171 soils are used. Additionally, the characterization of soil texture by entropy-based parameters provided by the model is tested. Results indicate that the logselfsimilar model may be a useful tool to simulate PSD for the construction of pedotransfer functions related to other soil properties when textural information is limited to moderate textural data

    Mapping seabed sediments of the Swallow Sand and South-West Deeps (West) MCZs

    Get PDF
    This report is on work undertaken for the JNCC under an Addendum to the Memorandum of Agreement dated 20 February 2014 between The Scottish Ministers, Natural Environment Research Council (NERC) and JNCC Support co. (JNCC). Under the terms of this Addendum JNCC requested that BGS carry out geostatistical analysis of sediment sample data from the CEND 8/12 survey of Swallow Sand MCZ and CEND 6/13 survey of South-west Deeps (West) MCZ in order to produce maps of sediment distribution in the sites. XX/00/00; Draft 0.1 Last modified: 2014/03/18 12:29 iii For each of the MCZ a geostatistical analysis of the data is reported leading to the selection of a robust linear model of corregionalization for the composition of the sediment, based on the additive log-ratio transformation of data on mud, sand and gravel content. This model is then used for spatial prediction on a 250-m grid. At each grid node a prediction distribution is obtained, conditional on neighbouring data and the selected model. By sampling from this distribution, and back-transforming onto the original compositional simplex of the data, we obtain a conditional expectation for the proportions of sand, gravel and mud at each location, a 95% confidence interval for the value at each node, and the probability that each of the four sediment texture classes that underly the EUNIS habitat classification is found at the node

    Shape index descriptors applied to texture-based galaxy analysis

    Get PDF
    A texture descriptor based on the shape index and the accompanying curvedness measure is proposed, and it is evaluated for the automated analysis of astronomical image data. A representative sample of images of low-redshift galaxies from the Sloan Digital Sky Survey (SDSS) serves as a testbed. The goal of applying texture descriptors to these data is to extract novel information about galaxies; information which is often lost in more traditional analysis. In this study, we build a regression model for predicting a spectroscopic quantity, the specific star-formation rate (sSFR). As texture features we consider multi-scale gradient orientation histograms as well as multi-scale shape index histograms, which lead to a new descriptor. Our results show that we can successfully predict spectroscopic quantities from the texture in optical multi-band images. We successfully recover the observed bi-modal distribution of galaxies into quiescent and star-forming. The state-ofthe-art for predicting the sSFR is a color-based physical model. We significantly improve its accuracy by augmenting the model with texture information. This study is the first step towards enabling the quantification of physical galaxy properties from imaging data alone.The Danish Council for Independent Research | Natural Sciences through the project "Surveying the sky using machine learning" (FNU 12-125149

    Variational Approaches For Learning Finite Scaled Dirichlet Mixture Models

    Get PDF
    With a massive amount of data created on a daily basis, the ubiquitous demand for data analysis is undisputed. Recent development of technology has made machine learning techniques applicable to various problems. Particularly, we emphasize on cluster analysis, an important aspect of data analysis. Recent works with excellent results on the aforementioned task using finite mixture models have motivated us to further explore their extents with different applications. In other words, the main idea of mixture model is that the observations are generated from a mixture of components, in each of which the probability distribution should provide strong flexibility in order to fit numerous types of data. Indeed, the Dirichlet family of distributions has been known to achieve better clustering performances than those of Gaussian when the data are clearly non-Gaussian, especially proportional data.  Thus, we introduce several variational approaches for finite Scaled Dirichlet mixture models. The proposed algorithms guarantee reaching convergence while avoiding the computational complexity of conventional Bayesian inference. In summary, our contributions are threefold. First, we propose a variational Bayesian learning framework for finite Scaled Dirichlet mixture models, in which the parameters and complexity of the models are naturally estimated through the process of minimizing the Kullback-Leibler (KL) divergence between the approximated posterior distribution and the true one. Secondly, we integrate component splitting into the first model, a local model selection scheme, which gradually splits the components based on their mixing weights to obtain the optimal number of components. Finally, an online variational inference framework for finite Scaled Dirichlet mixture models is developed by employing a stochastic approximation method in order to improve the scalability of finite mixture models for handling large scale data in real time. The effectiveness of our models is validated with real-life challenging problems including object, texture, and scene categorization, text-based and image-based spam email detection
    corecore