4,202 research outputs found

    Excitable Media Seminar

    Get PDF
    The simulation data presented here, and the conceptual framework developed for their interpretation are, both, in need of substantial refinement and extension. However, granting that they are initial pointers of some merit, and elementary indicators of general principles, several implications follow: the activity patterns of neurons and their assemblies are\ud interdependent with the extracellular milieu in which they are embedded, and to whose time varying composition they contribute. The complexity of this interdependence in the temporal dimension forecloses any time and context invariant relation between what the experimenter may consider stimulus input and its representation in neural activity. Hence, ideas of coding by (quasi)-digital neurons are called in question by the mutual interdependence of neurons and their\ud humoral milieu. Instead, concepts of 'mass action' in the Nervous system gain a new perspective: this time augmented by including the chemical medium surrounding neurons as part of the dynamics of the system as a whole. Accordingly, a meaningful way to describe activity in a neuron assembly would be in terms of a state space in which it can move along an infinite number of trajectories.\u

    Harnessing the power of cell transplantation to target respiratory dysfunction following spinal cord injury.

    Get PDF
    The therapeutic benefit of cell transplantation has been assessed in a host of central nervous system (CNS) diseases, including disorders of the spinal cord such as traumatic spinal cord injury (SCI). The promise of cell transplantation to preserve and/or restore normal function can be aimed at a variety of therapeutic mechanisms, including replacement of lost or damaged CNS cell types, promotion of axonal regeneration or sprouting, neuroprotection, immune response modulation, and delivery of gene products such as neurotrophic factors, amongst other possibilities. Despite significant work in the field of transplantation in models of SCI, limited attention has been directed at harnessing the therapeutic potential of cell grafting for preserving respiratory function after SCI, despite the critical role pulmonary compromise plays in patient outcome in this devastating disease. Here, we will review the limited number of studies that have demonstrated the therapeutic potential of intraspinal transplantation of a variety of cell types for addressing respiratory dysfunction in SCI

    Neuroinflammation, Mast Cells, and Glia: Dangerous Liaisons

    Get PDF
    The perspective of neuroinflammation as an epiphenomenon following neuron damage is being replaced by the awareness of glia and their importance in neural functions and disorders. Systemic inflammation generates signals that communicate with the brain and leads to changes in metabolism and behavior, with microglia assuming a pro-inflammatory phenotype. Identification of potential peripheral-to-central cellular links is thus a critical step in designing effective therapeutics. Mast cells may fulfill such a role. These resident immune cells are found close to and within peripheral nerves and in brain parenchyma/meninges, where they exercise a key role in orchestrating the inflammatory process from initiation through chronic activation. Mast cells and glia engage in crosstalk that contributes to accelerate disease progression; such interactions become exaggerated with aging and increased cell sensitivity to stress. Emerging evidence for oligodendrocytes, independent of myelin and support of axonal integrity, points to their having strong immune functions, innate immune receptor expression, and production/response to chemokines and cytokines that modulate immune responses in the central nervous system while engaging in crosstalk with microglia and astrocytes. In this review, we summarize the findings related to our understanding of the biology and cellular signaling mechanisms of neuroinflammation, with emphasis on mast cell-glia interactions

    Morphological plasticity of astroglia: Understanding synaptic microenvironment

    Get PDF
    Memory formation in the brain is thought to rely on the remodeling of synaptic connections which eventually results in neural network rewiring. This remodeling is likely to involve ultrathin astroglial protrusions which often occur in the immediate vicinity of excitatory synapses. The phenomenology, cellular mechanisms, and causal relationships of such astroglial restructuring remain, however, poorly understood. This is in large part because monitoring and probing of the underpinning molecular machinery on the scale of nanoscopic astroglial compartments remains a challenge. Here we briefly summarize the current knowledge regarding the cellular organisation of astroglia in the synaptic microenvironment and discuss molecular mechanisms potentially involved in use-dependent astroglial morphogenesis. We also discuss recent observations concerning morphological astroglial plasticity, the respective monitoring methods, and some of the newly emerging techniques that might help with conceptual advances in the area. GLIA 2015

    Investigating the Interactions Between Protocadherin-19 and Ryk and its Effect on Neurogenesis

    Get PDF
    Protocadherins are a large, diverse family of neural cell adhesion proteins, but their functions are not understood. Mutations or in several protocadherins have been associated with neurological disorders. For example, Protocadherin19 (PCDH19) causes epilepsy in females with mental retardation (EFMR). In this X chromosome-linked disease, girls randomly express one good allele or one mutant allele per cell due to a phenomenon known as X-linked inactivation. This mosaic expression leads to the symptoms classified as EFMR, but the effects on cellular pathways for the disease are not known. In zebrafish, the loss of Pcdh19 leads to the loss of columnar organization in the developing optic tectum through the loss of adhesion and an increase in neuronal proliferation and differentiation. The literature shows that Pcdh19 interacts with Ryk, a noncanonical Wnt receptor involved in neurogenesis. Based on previous data and the literature, we hypothesize that Pcdh19 binds to the extracellular domain of Ryk to inhibit binding of the Wnt3 ligand, preventing the intracellular domain of Ryk from being cleaved and translocated to the nucleus where it would initiate pathways for neuronal proliferation. Immunohistochemistry and co-immunoprecipitation were attempted to show if Pcdh19 affects cleavage of the Ryk intracellular domain, its nuclear translocation, and subsequent Wnt signaling. Transgenic and Ryk-knockout fish are being developed to perform experiments in vivo.School of Health and Rehabilitation Sciences Honors CommitteeUndergraduate Research Office Summer Funding AwardA three-year embargo was granted for this item.Academic Major: Biomedical Scienc

    Beyond cell replacement: unresolved roles of NG2-expressing progenitors

    Get PDF
    NG2-expressing parenchymal precursors (NG2+p) serve as primary source of myelinating oligodendrocytes in both the developing and adult CNS. However, their abundance, limited differentiation potential at adult stages along with stereotypic reaction to injury independent of the extent of myelin loss suggest that NG2+p exert functions additional to myelin production. In support of this view, NG2+p express a complex battery of molecules known to exert neuromodulatory and neuroprotective functions. Further, they establish intimate physical associations with the other CNS cell types, receive functional synaptic contacts and possess ion channels apt to constantly sense the electrical activity of surrounding neurons. These latter features could endow NG2+p with the capability to affect neuronal functions with potential homeostatic outcomes.Here we summarize and discuss current evidence favouring the view that NG2+p can participate in circuit formation, modulate neuronal activity and survival in the healthy and injured CNS, and propose perspectives for studies that may complete our understanding of NG2+p roles in physiology and pathology.<br/

    Modelling Chemical Communication in Neuroglia

    Get PDF
    In vivo many forms of glia utilise both intercellular and extracellular pathways in the form of IP3 permeable gap junctions and cytoplasmic ATP diffusion to produce calcium waves. We introduce a model of ATP and Ca2+ waves in clusters of glial cells in which both pathways are included. Through demonstrations of its capacity to replicate the results of existing theoretical models of individual pathways and to simulate experimental observations of retinal glia the validity of the model is confirmed. Characteristics of the waves resulting from the inclusion of both pathways are identified and described

    A common role for astrocytes in rhythmic behaviours?

    Get PDF
    Authors acknowledge the Motor Neurone Disease (MND) Association UK (Miles/Apr18/863-791) and the Biotechnology and Biological Sciences Research Council (BBSRC; BB/M021793/1) for their funding and support.Astrocytes are a functionally diverse form of glial cell involved in various aspects of nervous system infrastructure, from the metabolic and structural support of neurons to direct neuromodulation of synaptic activity. Investigating how astrocytes behave in functionally related circuits may help us understand whether there is any conserved logic to the role of astrocytes within neuronal networks. Astrocytes are implicated as key neuromodulatory cells within neural circuits that control a number of rhythmic behaviours such as breathing, locomotion and circadian sleep-wake cycles. In this review, we examine the evidence that astrocytes are directly involved in the regulation of the neural circuits underlying six different rhythmic behaviours: locomotion, breathing, chewing, gastrointestinal motility, circadian sleep-wake cycles and oscillatory feeding behaviour. We discuss how astrocytes are integrated into the neuronal networks that regulate these behaviours, and identify the potential gliotransmission signalling mechanisms involved. From reviewing the evidence of astrocytic involvement in a range of rhythmic behaviours, we reveal a heterogenous array of gliotransmission mechanisms, which help to regulate neuronal networks. However, we also observe an intriguing thread of commonality, in the form of purinergic gliotransmission, which is frequently utilised to facilitate feedback inhibition within rhythmic networks to constrain a given behaviour within its operational range.PostprintPeer reviewe

    Brain edema : a valid endpoint for measuring hepatic encephalopathy?

    Get PDF
    Hepatic encephalopathy (HE) is a major complication of liver failure/disease which frequently develops during the progression of end-stage liver disease. This metabolic neuropsychiatric syndrome involves a spectrum of symptoms, including cognition impairment, attention deficits and motor dysfunction which eventually can progress to coma and death. Pathologically, HE is characterized by swelling of the astrocytes which consequently leads to brain edema, a common feature found in patients with acute liver failure (ALF) as well as in cirrhotic patients suffering from HE. The pathogenic factors involved in the onset of astrocyte swelling and brain edema in HE are unresolved. However, the role of astrocyte swelling/brain edema in the development of HE remains ambiguous and therefore measuring brain edema as an endpoint to evaluate HE is questioned. The following review will determine the effect of astrocyte swelling and brain edema on neurological function, discuss the various possible techniques to measure brain edema and lastly to propose a number of neurobehavioral tests to evaluate HE
    corecore