58 research outputs found

    Anomaly detection in wireless mesh lighting networks

    Get PDF

    Impact Analysis of JellyFish Attack in MANETs

    Get PDF
    MANETs or Mobile Ad Hoc Networks is a network that consists of mobile nodes, is selforganizing and short lived. Due to the openness, decentralized and infrastructure less architecture it can be prone to different types of attacks. One such attack is the JellyFish attack. It is a type of passive attack .It is very difficult to detect this attack as it complies with the protocols. In this paper we present a study on this attack and its variants. The first section gives a brief introduction on MANETs and the different types of attacks on it from different point of view. The later section we concentrate on the JellyFish Attack. Further a review on the analysis is carried out from different sources to understand the impact of this attack on the performance and its effect on the network.Keywords: Active attacks, Passive Attacks, JellyFish Attack, AODV, DSR, TORA, GR

    Solving Downgrade and DoS Attack Due to the Four Ways Handshake Vulnerabilities (WIFI)

    Get PDF
    The growing volume of attacks on the Internet has increased the demand for more robust systems and sophisticated tools for vulnerability analysis, intrusion detection, forensic investigations, and possible responses. Current hacker tools and technologies warrant reengineering to address cyber crime and homeland security. The being aware of the flaws on a network is necessary to secure the information infrastructure by gathering network topology, intelligence, internal/external vulnerability analysis, and penetration testing. This paper has as main objective to minimize damages and preventing the attackers from exploiting weaknesses and vulnerabilities in the 4 ways handshake (WIFI).We equally present a detail study on various attacks and some solutions to avoid or prevent such attacks in WLAN

    Security of the Internet of Things: Vulnerabilities, Attacks and Countermeasures

    Get PDF
    Wireless Sensor Networks (WSNs) constitute one of the most promising third-millennium technologies and have wide range of applications in our surrounding environment. The reason behind the vast adoption of WSNs in various applications is that they have tremendously appealing features, e.g., low production cost, low installation cost, unattended network operation, autonomous and longtime operation. WSNs have started to merge with the Internet of Things (IoT) through the introduction of Internet access capability in sensor nodes and sensing ability in Internet-connected devices. Thereby, the IoT is providing access to huge amount of data, collected by the WSNs, over the Internet. Hence, the security of IoT should start with foremost securing WSNs ahead of the other components. However, owing to the absence of a physical line-of-defense, i.e., there is no dedicated infrastructure such as gateways to watch and observe the flowing information in the network, security of WSNs along with IoT is of a big concern to the scientific community. More specifically, for the application areas in which CIA (confidentiality, integrity, availability) has prime importance, WSNs and emerging IoT technology might constitute an open avenue for the attackers. Besides, recent integration and collaboration of WSNs with IoT will open new challenges and problems in terms of security. Hence, this would be a nightmare for the individuals using these systems as well as the security administrators who are managing those networks. Therefore, a detailed review of security attacks towards WSNs and IoT, along with the techniques for prevention, detection, and mitigation of those attacks are provided in this paper. In this text, attacks are categorized and treated into mainly two parts, most or all types of attacks towards WSNs and IoT are investigated under that umbrella: “Passive Attacks” and “Active Attacks”. Understanding these attacks and their associated defense mechanisms will help paving a secure path towards the proliferation and public acceptance of IoT technology

    A Lightweight Blockchain and Fog-enabled Secure Remote Patient Monitoring System

    Full text link
    IoT has enabled the rapid growth of smart remote healthcare applications. These IoT-based remote healthcare applications deliver fast and preventive medical services to patients at risk or with chronic diseases. However, ensuring data security and patient privacy while exchanging sensitive medical data among medical IoT devices is still a significant concern in remote healthcare applications. Altered or corrupted medical data may cause wrong treatment and create grave health issues for patients. Moreover, current remote medical applications' efficiency and response time need to be addressed and improved. Considering the need for secure and efficient patient care, this paper proposes a lightweight Blockchain-based and Fog-enabled remote patient monitoring system that provides a high level of security and efficient response time. Simulation results and security analysis show that the proposed lightweight blockchain architecture fits the resource-constrained IoT devices well and is secure against attacks. Moreover, the augmentation of Fog computing improved the responsiveness of the remote patient monitoring system by 40%.Comment: 32 pages, 13 figures, 5 tables, accepted by Elsevier "Internet of Things; Engineering Cyber Physical Human Systems" journal on January 9, 202
    • …
    corecore