8,309 research outputs found

    SAT Modulo Monotonic Theories

    Full text link
    We define the concept of a monotonic theory and show how to build efficient SMT (SAT Modulo Theory) solvers, including effective theory propagation and clause learning, for such theories. We present examples showing that monotonic theories arise from many common problems, e.g., graph properties such as reachability, shortest paths, connected components, minimum spanning tree, and max-flow/min-cut, and then demonstrate our framework by building SMT solvers for each of these theories. We apply these solvers to procedural content generation problems, demonstrating major speed-ups over state-of-the-art approaches based on SAT or Answer Set Programming, and easily solving several instances that were previously impractical to solve

    Speeding up the constraint-based method in difference logic

    Get PDF
    "The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-40970-2_18"Over the years the constraint-based method has been successfully applied to a wide range of problems in program analysis, from invariant generation to termination and non-termination proving. Quite often the semantics of the program under study as well as the properties to be generated belong to difference logic, i.e., the fragment of linear arithmetic where atoms are inequalities of the form u v = k. However, so far constraint-based techniques have not exploited this fact: in general, Farkas’ Lemma is used to produce the constraints over template unknowns, which leads to non-linear SMT problems. Based on classical results of graph theory, in this paper we propose new encodings for generating these constraints when program semantics and templates belong to difference logic. Thanks to this approach, instead of a heavyweight non-linear arithmetic solver, a much cheaper SMT solver for difference logic or linear integer arithmetic can be employed for solving the resulting constraints. We present encouraging experimental results that show the high impact of the proposed techniques on the performance of the VeryMax verification systemPeer ReviewedPostprint (author's final draft

    Integrating heterogeneous knowledges for understanding biological behaviors: a probabilistic approach

    Get PDF
    Despite recent molecular technique improvements, biological knowledge remains incomplete. Reasoning on living systems hence implies to integrate heterogeneous and partial informations. Although current investigations successfully focus on qualitative behaviors of macromolecular networks, others approaches show partial quantitative informations like protein concentration variations over times. We consider that both informations, qualitative and quantitative, have to be combined into a modeling method to provide a better understanding of the biological system. We propose here such a method using a probabilistic-like approach. After its exhaustive description, we illustrate its advantages by modeling the carbon starvation response in Escherichia coli. In this purpose, we build an original qualitative model based on available observations. After the formal verification of its qualitative properties, the probabilistic model shows quantitative results corresponding to biological expectations which confirm the interest of our probabilistic approach.Comment: 10 page

    Exploiting Query Structure and Document Structure to Improve Document Retrieval Effectiveness

    Get PDF
    In this paper we present a systematic analysis of document retrieval using unstructured and structured queries within the score region algebra (SRA) structured retrieval framework. The behavior of di®erent retrieval models, namely Boolean, tf.idf, GPX, language models, and Okapi, is tested using the transparent SRA framework in our three-level structured retrieval system called TIJAH. The retrieval models are implemented along four elementary retrieval aspects: element and term selection, element score computation, score combination, and score propagation. The analysis is performed on a numerous experiments evaluated on TREC and CLEF collections, using manually generated unstructured and structured queries. Unstructured queries range from the short title queries to long title + description + narrative queries. For generating structured queries we exploit the knowledge of the document structure and the content used to semantically describe or classify documents. We show that such structured information can be utilized in retrieval engines to give more precise answers to user queries then when using unstructured queries
    corecore