1,446 research outputs found

    Pre-Congestion Notification (PCN) Architecture

    Get PDF
    This document describes a general architecture for flow admission and termination based on pre-congestion information in order to protect the quality of service of established, inelastic flows within a single Diffserv domain.\u

    SIP Controlled Admission and Preemption

    Get PDF
    This framework defines a method of providing Explicit Congestion Control to real-time inelastic traffic like voice and video through the use of session admission control and preemption mechanisms. This approach uses the Pre-Congestion Notification Marking (PCN) [1]\ud mechanism. PCN marking is deployed in routers to measure and convey two levels of onset of congestion with the SIP controlled endpoints responding to the marking. This approach is different from what is defined in An edge-to-edge Deployment Model for Pre-Congestion Notification [3], as here the admission and preemption control function resides in the application (either in the endpoint or the application server that controls the endpoint. This framework is focused on using Session Initiated Protocol (SIP) as the application signaling protocol but other application signaling protocols could be extended for this purpose.\u

    SIP Controlled Admission and Preemption

    Get PDF

    Enhancing QoS provisioning and granularity in next generation internet

    Get PDF
    Next Generation IP technology has the potential to prevail, both in the access and in the core networks, as we are moving towards a multi-service, multimedia and high-speed networking environment. Many new applications, including the multimedia applications, have been developed and deployed, and demand Quality of Service (QoS) support from the Internet, in addition to the current best effort service. Therefore, QoS provisioning techniques in the Internet to guarantee some specific QoS parameters are more a requirement than a desire. Due to the large amount of data flows and bandwidth demand, as well as the various QoS requirements, scalability and fine granularity in QoS provisioning are required. In this dissertation, the end-to-end QoS provisioning mechanisms are mainly studied, in order to provide scalable services with fine granularity to the users, so that both users and network service providers can achieve more benefits from the QoS provisioned in the network. To provide the end-to-end QoS guarantee, single-node QoS provisioning schemes have to be deployed at each router, and therefore, in this dissertation, such schemes are studied prior to the study of the end-to-end QoS provisioning mechanisms. Specifically, the effective sharing of the output bandwidth among the large amount of data flows is studied, so that fairness in the bandwidth allocation among the flows can be achieved in a scalable fashion. A dual-rate grouping architecture is proposed in this dissertation, in which the granularity in rate allocation can be enhanced, while the scalability of the one-rate grouping architecture is still maintained. It is demonstrated that the dual-rate grouping architecture approximates the ideal per-flow based PFQ architecture better than the one-rate grouping architecture, and provides better immunity capability. On the end-to-end QoS provisioning, a new Endpoint Admission Control scheme for Diffserv networks, referred to as Explicit Endpoint Admission Control (EEAC), is proposed, in which the admission control decision is made by the end hosts based on the end-to-end performance of the network. A novel concept, namely the service vector, is introduced, by which an end host can choose different services at different routers along its data path. Thus, the proposed service provisioning paradigm decouples the end-to-end QoS provisioning from the service provisioning at each router, and the end-to-end QoS granularity in the Diffserv networks can be enhanced, while the implementation complexity of the Diffserv model is maintained. Furthermore, several aspects of the implementation of the EEAC and service vector paradigm, referred to as EEAC-SV, in the Diffserv architecture are also investigated. The performance analysis and simulation results demonstrate that the proposed EEAC-SV scheme, not only increases the benefit to the service users, but also enhances the benefit to the network service provider in terms of network resource utilization. The study also indicates that the proposed EEAC-SV scheme can provide a compatible and friendly networking environment to the conventional TCP flows, and the scheme can be deployed in the current Internet in an incremental and gradual fashion

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Advances in Internet Quality of Service

    Get PDF
    We describe recent advances in theories and architecture that support performance guarantees needed for quality of service networks. We start with deterministic computations and give applications to integrated services, differentiated services, and playback delays. We review the methods used for obtaining a scalable integrated services support, based on the concept of a stateless core. New probabilistic results that can be used for a statistical dimensioning of differentiated services are explained; some are based on classical queuing theory, while others capitalize on the deterministic results. Then we discuss performance guarantees in a best effort context; we review: methods to provide some quality of service in a pure best effort environment; methods to provide some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Providing guaranteed QoS in the hose-modeled VPN

    Get PDF
    With the development of the Internet, Internet service providers (ISPs) are required to offer revenue-generating and value-added services instead of only providing bandwidth and access services. Virtual Private Network (VPN) is one of the most important value-added services for ISPs. The classical VPN service is provided by implementing layer 2 technologies, either Frame Relay (FR) or Asynchronous Transfer Mode (ATM). With FR or ATM, virtual circuits are created before data delivery. Since the bandwidth and buffers are reserved, the QoS requirements can be naturally guaranteed. In the past few years, layer 3 VPN technologies are widely deployed due to the desirable performance in terms of flexibility, scalability and simplicity. Layer 3 VPNs are built upon IP tunnels, e.g., by using PPTP, L2TP or IPSec. Since IP is best-of-effort in nature, the QoS requirement cannot be guaranteed in layer 3 VPNs. Actually, layer 3 VPN service can only provide secure connectivity, i.e., protecting and authenticating IP packets between gateways or hosts in a VPN. Without doubt, with more applications on voice, audio and video being used in the Internet, the provision of QoS is one of the most important parts of the emerging services provided by ISPs. An intriguing question is: Is it possible to obtain the best of both layer 2 and 3 VPN? Is it possible to provide guaranteed or predictable QoS, as in layer 2 VPNs, while maintaining the flexibility and simplicity in layer 3 VPN? This question is the starting point of this study. The recently proposed hose model for VPN possesses desirable properties in terms of flexibility, scalability and multiplexing gain. However, the classic fair bandwidth allocation schemes and weighted fair queuing schemes raise the issue of low overall utilization in this model. A new fluid model for provider-provisioned virtual private network (PPVPN) is proposed in this dissertation. Based on the proposed model, an idealized fluid bandwidth allocation scheme is developed. This scheme is proven, analytically, to have the following properties: 1) maximize the overall throughput of the VPN without compromising fairness; 2) provide a mechanism that enables the VPN customers to allocate the bandwidth according to their requirements by assigning different weights to different hose flows, and thus obtain the predictable QoS performance; and 3) improve the overall throughput of the ISPs\u27 network. To approximate the idealized fluid scheme in the real world, the 2-dimensional deficit round robin (2-D DRR and 2-D DRR+) schemes are proposed. The integration of the proposed schemes with the best-effort traffic within the framework of virtual-router-based VPN is also investigated. The 2-D DRR and 2-D DER-+ schemes can be extended to multi-dimensional schemes to be employed in those applications which require a hierarchical scheduling architecture. To enhance the scalability, a more scalable non-per-flow-based scheme for output queued switches is developed as well, and the integration of this scheme within the framework of the MPLS VPN and applications for multicasting traffics is discussed. The performance and properties of these schemes are analyzed

    A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    Get PDF
    In this thesis, we analyze various factors that affect quality of service (QoS) communication in high-speed, packet-switching sub-networks. We hypothesize that sub-network-wide bandwidth reservation and guaranteed CPU processing power at endpoint systems for handling data traffic are indispensable to achieving hard end-to-end quality of service. Different bandwidth reservation strategies, traffic characterization schemes, and scheduling algorithms affect the network resources and CPU usage as well as the extent that QoS can be achieved. In order to analyze those factors, we design and implement a communication layer. Our experimental analysis supports our research hypothesis. The Resource ReSerVation Protocol (RSVP) is designed to realize resource reservation. Our analysis of RSVP shows that using RSVP solely is insufficient to provide hard end-to-end quality of service in a high-speed sub-network. Analysis of the IEEE 802.lp protocol also supports the research hypothesis
    • …
    corecore