789,413 research outputs found

    Control of Locomotion with Shape-Changing Wheels

    Get PDF
    We present a novel approach to controlling the locomotion of a wheel by changing its shape, leading to applications to the synthesis and closed-loop control of gaits for modular robots. A dynamic model of a planar, continuous deformable ellipse in contact with a ground surface is derived. We present two alternative approaches to controlling this system and a method for mapping the gaits to a discrete rolling polygon. Mathematical models and dynamic simulation of the continuous approximation and the discrete n-body system, and experimental results obtained from a physical modular robot system illustrate the accuracy of the dynamic models and the validity of the approach

    Displacement of a bubble by acoustic radiation force into a fluid-tissue interface.

    Get PDF
    Microbubbles in an ultrasound beam experience a primary Bjerknes force, which pushes the microbubbles against a fluid-tissue interface and deforms the tissue. This interaction has been used to measure tissue elasticity and is a common interaction in many therapeutic and diagnostic applications, but the mechanisms of deformation, and how the deformation dynamic depends on the bubble and ultrasound parameters, remain unknown. In this study, a mathematical model is proposed for the displacement of a bubble onto a fluid-tissue interface and the tissue deformation in response to the primary Bjerknes force. First, a model was derived for static loading and the model's prediction of bubble-mediated tissue displacement and stresses in tissue were explored. Second, the model was updated for dynamic loading. The results showed that the bubble is both displaced by the applied force and changes its shape. The bubble displacement changes nonlinearly with the applied force. The stress values in tissue are quite high for a distance within one radius of the bubble from the bubble surface. The model proposed here is permissible in human tissue and can be used for biomedical ultrasound applications, including material characterization

    Shape Recognition: A Landmark-Based Approach

    Get PDF
    Shape recognition has applications in computer vision tasks such as industrial automated inspection and automatic target recognition. When objects are occluded, many recognition methods that use global information will fail. To recognize partially occluded objects, we represent each object by a Set of landmarks. The landmarks of an object are points of interest which have important shape attributes and are usually obtained from the object boundary. In this study, we use high curvature points along an object boundary as the landmarks of the object. Given a scene consisting of partially occluded objects, the hypothesis of a model object in the scene is verified by matching the landmarks of an object with those in the scene. A measure of similarity between two landmarks, one from a model and the other from a scene, is needed to perform this matching. One such local shape measure is the sphericity of a triangular transformation mapping the model landmark and its two neighboring landmarks to the scene landmark and its two neighboring landmarks. Sphericity is in general defined for a diffeomorphism. Its invariant properties under a group of transformation, namely, translation, rotation, and scaling are derived. The sphericity of a triangular transformation is shown to be a robust local shape measure in the sense that minor distortion in the landmarks does not significantly alter its value. To match landmarks between a model and a scene, a table of compatibility, where each entry of the table is the sphericity value derived from the mapping of a model landmark to a scene landmark, is constructed. A hopping dynamic programming procedure which switches between a forward and a backward dynamic programming procedure is applied to guide the landmark matching through the compatibility table. The location of the model in the scene is estimated with a least squares fit among the matched landmarks. A heuristic measure is then computed to decide if the model is in the scene

    Dynamic Bezier curves for variable rate-distortion

    Get PDF
    Bezier curves (BC) are important tools in a wide range of diverse and challenging applications, from computer-aided design to generic object shape descriptors. A major constraint of the classical BC is that only global information concerning control points (CP) is considered, consequently there may be a sizeable gap between the BC and its control polygon (CtrlPoly), leading to a large distortion in shape representation. While BC variants like degree elevation, composite BC and refinement and subdivision narrow this gap, they increase the number of CP and thereby both the required bit-rate and computational complexity. In addition, while quasi-Bezier curves (QBC) close the gap without increasing the number of CP, they reduce the underlying distortion by only a fixed amount. This paper presents a novel contribution to BC theory, with the introduction of a dynamic Bezier curve (DBC) model, which embeds variable localised CP information into the inherently global Bezier framework, by strategically moving BC points towards the CtrlPoly. A shifting parameter (SP) is defined that enables curves lying within the region between the BC and CtrlPoly to be generated, with no commensurate increase in CP. DBC provides a flexible rate-distortion (RD) criterion for shape coding applications, with a theoretical model for determining the optimal SP value for any admissible distortion being formulated. Crucially DBC retains core properties of the classical BC, including the convex hull and affine invariance, and can be seamlessly integrated into both the vertex-based shape coding and shape descriptor frameworks to improve their RD performance. DBC has been empirically tested upon a number of natural and synthetically shaped objects, with qualitative and quantitative results confirming its consistently superior shape approximation performance, compared with the classical BC, QBC and other established BC-based shape descriptor techniques

    Model of tactile sensors using soft contacts and its application in robot grasping simulation

    Get PDF
    In the context of robot grasping and manipulation, realistic dynamic simulation requires accurate modeling of contacts between bodies and, in a practical level, accurate simulation of touch sensors. This paper addresses the problem of creating a simulation of a tactile sensor as well as its implementation in a simulation environment. The simulated tactile sensor model utilizes collision detection and response methods using soft contacts as well as a full friction description. The tactile element is created based on a geometry enabling the creation of a variety of different shape tactile sensors. The tactile sensor element can be used to detect touch against triangularized geometries. This independence in shape enables the use of the sensor model for various applications, ranging from regular tactile sensors to more complex geometries as the human hand which makes it possible to explore human-like touch. The developed tactile sensor model is implemented within OpenGRASP and is available in the open-source plugin. The model has been validated through several experiments ranging from physical properties verification to testing on robot grasping applications. This simulated sensor can provide researchers with a valuable tool for robotic grasping research, especially in cases where the real sensors are not accurate enough yet

    ANALYTICS DRIVEN DATA MODEL IN DIGITAL SERVICES

    Get PDF
    Data models are generally applied to construct consolidated abstraction of various rich and different domains of data. In this paper, we focus on the digital services domain in particularly customer related data model and its structure in helping to shape the analytics capabilities. The traditional Entity Relationship Diagram (ERD) is used as the cornerstone of the strategy and further elaboration is made through abstraction to encompass areas in the digital services. A data model is developed to cover both static aspects (customers’ profile) and dynamic aspects (customers’ behaviour). The foundation of the customer aspect is constructed in classes that represent different types of customer touch points represented as digital footprint which analogize physical activities. The customer dynamic aspects of digital service are modeled with a group of classes where priority is embodied in different associations involving creation and termination of the identified interaction. The suggested data model can be deployed in development of frameworks for customer related applications and enhancement of analytics capabilities.Keywords: Data model, Analytics, Digital service

    The Base Balance Measurement Technique And Applications To Dynamic Wind Loading To Structures

    Get PDF
    Wind tunnel testing is the only confident method of predicting the response of buildings to natural wind currently available. Modelling techniques are well developed, but rely in most instances on representation of the turbulent boundary layer in a wind tunnel, and complete modelling of all the structural parameters such as shape, mass, damping and stiffness. The resulting dynamic responses of the aeroelastic models can directly be scaled to full scale values. Aeroelastic models, however, are expensive, require much time before availability of results, and are specific to the structural parameters modelled.;The subject of this study is to directly measure the total dynamic modal forces, using a high frequency, balance-model system with a flat frequency response. The foam models are mounted on a sensitive, but rigid five-component balance which is described in detail. This balance is believed to represent the state of the art for the intended load ranges.;Practical applications of direct force measurements to estimate the response of structures are presented. Theoretical considerations, and comparisons of results with conventional wind tunnel experiments, show that the method is an economical alternative for many conventional structures. Advantages, in addition to a less costly and time consuming experiment, include the straightforward revisions of predicted responses for modifications to the structure. The modal forces are dependent only on the structure shape and not on its dynamic properties.;Knowing the dynamic force permits structures to be studied for non-linear behaviour. Forces can either be used directly as measured by the balance-model combination, or simulated with a digital computer. Low order auto-regressive processes are shown to give an efficient simulation of most forces. A collection of modal forces with computed parameters are presented, which are suitable for application in the frequency domain (linear problems) or time domain (non-linear problems).;Applications of simulated modal forces is illustrated with studies of simple yielding structures. Simulation studies provide useful information on building behaviour. Only a digital computer is necessary after initial measurements are conducted in a wind tunnel

    Impact of hybrid surfaces on the droplet breakup dynamics in microgravity slug flow: A dynamic contact angle analysis

    Get PDF
    Microfluidic devices, which enable precise control and manipulation of fluids at the microscale, have revolutionized various fields, including chemical synthesis and space technology. A comprehensive understanding of fluid behavior under diverse conditions, particularly in microgravity, is essential for optimizing the design and performance of these devices. This paper aims to investigate the effects of discontinuous wettability on droplet breakup structures under microgravity conditions using a microchannel wall. The approach we adopt is underpinned by the volume-of-fluid methodology, an efficient technique renowned for its accurate resolution of the fluid interface in a two-phase flow. Furthermore, a modified dynamic contact angle model is employed to precisely predict the shape of the droplet interface at and near the wall. Our comprehensive model considers influential parameters such as slug length and droplet generation frequency, thereby providing crucial insights into their impact on the two-phase interface velocity. Validated against existing literature data, our model explores the impact of various configurations of discontinuous wettability on breakup morphology. Our findings highlight the significance of employing a dynamic contact angle methodology for making accurate predictions of droplet shape, which is influenced by the wall contact angle. Emphasis is placed particularly on the effects of slug length and droplet generation frequency. Notably, we demonstrate that the use of a hybrid surface at the junction section allows for precise control over the shape and size of the daughter droplets, contrasting with the symmetrical division observed on uniformly hydrophilic or superhydrophobic surfaces. This study contributes valuable insights into the complex dynamics of the droplet breakup process, which has profound implications for the design and optimization of microfluidic devices operating under microgravity conditions. Such insights are further poised to augment applications in space exploration, microreactors, and more
    • …
    corecore