263 research outputs found

    Towards early hemolysis detection: a smartphone based approach

    Get PDF
    Os especialistas em diagnóstico in vitro (IVDs) têm confiado maioritariamente na inspeção visual (ótica) manual e, em segundo lugar, em sensores óticos ou câmaras embutidas ou dispositivos médicos incorporados que suportam o exame da qualidade da amostra na fase pré-analítica. Com o aumento dos volumes de amostras para serem processadas e dos respetivos dados complexos gerados por esse processamento, aquelas técnicas tornaram-se cada vez mais difíceis de utilizar, ou os respetivos resultados não ficam imediatamente disponíveis. Para superar as complexidades impostas por tais técnicas tradicionais, o aumento do uso de dispositivos móveis e algoritmos de processamento de imagem no setor de saúde abriu caminho para a constituição de novos casos de uso baseados em análises móveis de amostras, pois fornecem uma interação simples e intuitiva com objetos gráficos familiares que são mostrados no ecrã dos smartphones. As interfaces gráficas e as técnicas de interação suportadas por dispositivos móveis podem pois proporcionar ao especialista em IVD uma série de vantagens e valor agregado devido à maior familiaridade com estes dispositivos e à grande acessibilidade que evidenciam atualmente, tendo o potencial de facilitar as análises de amostras. No entanto, o uso sistemático de dispositivos móveis no setor da saúde encontra-se ainda numa fase muito incipiente, em particular na área de IVD. Nesta tese, propõe-se conceber e discutir a arquitetura, a conceção e a implementação de um protótipo de uma aplicação móvel para smartphone (designada por "HemoDetect") que implementa um conjunto sugerido de algoritmos, interfaces e técnicas de interação que foram desenvolvidos com o objetivo de contribuir para a compreensão de técnicas mais eficientes para ajudar a detetar a hemólise, um processo que designa a rotura de glóbulos vermelhos (eritrócitos) e libertação do respetivo conteúdo (citoplasma) para o fluído circundante (por exemplo, plasma sanguíneo), complementando-as com estatísticas e medições de laboratório, mostrando a utilização de um protótipo durante experiências, permitindo assim chegar-se a um conceito viável que permita apoiar eficazmente a deteção precoce de hemólise.In Vitro Diagnostics (IVDs) specialists have been firstly relying on manual visual (optical) inspection and, secondly, on optical sensors or cameras embedded or built-in medical devices which support the examination of sample quality in pre-analytical phase. With increasing sample processing volumes and their generated complex data, these techniques have become increasingly difficult or results are not readily available. In order to overcome the complexities posed by these traditional techniques, the increased usage of mobile devices and algorithms in the healthcare industry paves the way into shaping new use cases and discovery of mobile analysis of samples, as they provide a user-friendly and familiar interaction with objects displayed on their screens. The interfaces and interaction techniques rendered by mobile devices, bring, to the IVD specialist, a number of advantages and added value due to increased familiarity with the devices or their accessibility, which is made easier. However, they are at the beginning of their journey in the healthcare industry, in particular in the IVD and point-of-care areas. In this thesis, the proposal is to discover and discuss the architecture, design and implementation of a smartphone prototype app (called “HemoDetect”) with its algorithms, interfaces and interaction techniques which was developed to help detect hemolysis which represents the rupture of red blood cells (erythrocytes) and release of their contents (cytoplasm) into surrounding fluid (e.g. blood plasma), and complementing it with from-the-lab statistics and measurements showing its utilization during experiments, which ultimately may be a feasible concept that could support early hemolysis detection.Les spécialistes du diagnostic in vitro (DIV) se sont d'abord appuyés sur l'inspection visuelle (optique) manuelle et, ensuite, sur des capteurs optiques ou des caméras intégrées ou intégrées à des dispositifs médicaux qui facilitent l'examen de la qualité des échantillons en phase pré-analytique. Avec l'augmentation des volumes de traitement des échantillons et des données complexes générées, ces techniques sont devenues de plus en plus difficiles ou les résultats ne sont pas facilement disponibles. Afin de surmonter les complexités posées par ces techniques traditionnelles, l'utilisation croissante des appareils mobiles et des algorithmes dans le secteur de la santé ouvre la voie à la définition de nouveaux cas d'utilisation et à la découverte d'analyses d'échantillons mobiles, car ils fournissent une interaction conviviale et familière. avec des objets affichés sur leurs écrans. Les interfaces et les techniques d'interaction rendues par les appareils mobiles apportent au spécialiste des dispositifs de DIV un certain nombre d'avantages et de valeur ajoutée en raison d'une familiarisation accrue avec les appareils ou de leur accessibilité, ce qui est facilité. Cependant, ils sont au début de leur parcours dans le secteur de la santé, en particulier dans le domains des DIV et point-of-care. Dans cette thèse, la proposition est de découvrir et de discuter de l’architecture, de la conception et de la mise en oeuvre d’une application pour smartphone (appelée «HemoDetect») avec ses algorithmes, interfaces et techniques d’interaction, qui a été développée pour aider à détecter l’hémolyse qui représente une rupture des globules rouges (érythrocytes) et la libération de leur contenu (cytoplasme) dans le liquide environnant (par exemple, le plasma sanguin), en le complétant par des statistiques de laboratoire et des mesures montrant son utilisation au cours des expériences, ce qui pourrait finalement être un concept réalisable qui pourrait permettre une détection précoce de l'hémolyse

    Modeling and Simulation of Lipid Membranes

    Get PDF
    Cell membranes are complex structures able to contain the main elements of the cell and to protect them from the external surroundings, becoming the most fundamental interface in Biology. The main subject of this book is the study of the structure and characteristics of lipid membranes in a wide variety of environments, ranging from simple phospholipid membranes to complex systems including proteins, peptides, or oncogenes as well as the analysis of the interactions of the membrane components with small molecules and drugs. The scope of this book is to provide recent developments on membrane structure, composition and function by means of theoretical and experimental techniques, some of them combining computer simulations with available data obtained at the laboratory.This Special Issue aims to report brand new key contributions to the field and also to give an overview about the connection between experiments and computer simulations, addressing fundamental aspects and applied research in biological membranes, with particular attention paid to the applications of computer modeling and simulation to medicine

    A Changing Perspective for Treatment of Chronic Kidney Disease

    Get PDF
    Chronic kidney disease (CKD) has become an enormous worldwide health problem, both in developed and less developed countries. The incidence and prevalence of CKD is high, and is associated with increased mortality and morbidity. Of note, CKD is the 12th most common primary cause of death, accounting for about 1 million deaths per year worldwide. CKD and end-stage renal disease are characterized by the progressive development of a series of complications, such as anemia, hyperkalemia, hypervolemia, mineral and bone disorders (CKD-MBD), metabolic acidosis, hyperuricemia and wasting; all of these complications have been shown to be associated with adverse outcomes, and can contribute either individually or in association to the cardiovascular morbidity and mortality observed in CKD. While at this time CKD progression is not treated with high efficacy, new biomarkers of kidney fibrosis have become available in recent years and new treatments for kidney fibrosis and cell loss could become soon available. In addition recent progress in our understanding of CKD pathophysiology together with the development of novel therapeutic agents has led to a renewed attention on the treatment of CKD–associated metabolic complications which are now are amenable to therapeutic interventions. All these important issues are addressed in this volume

    Vitamin C: Current Concepts in Human Physiology

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Vitamin C is synthesized by almost all animals. However, for humans, it is a vitamin that needs constant replenishment in the diet. While its role as an anti-oxidant and for preventing scurvy have been known for a long time, novel functions and unrecognized associations continue to be identified for this enigmatic molecule. In the past decade, new details have emerged regarding differences in its uptake by oral and intravenous modes. While vitamin C deficiency remains largely unknown and poorly addressed in many segments of the population, novel pharmacological roles for high-dose, intravenous vitamin C in many disease states have now been postulated and investigated. This has shifted its role in health and disease from the long-perceived notion as merely a vitamin and an anti-oxidant to a pleiotropic molecule with a broad anti-inflammatory, epigenetic, and anti-cancer profile. This Special Issue comprises original research papers and reviews on vitamin C metabolism and function that relate to the following topics: understanding its role in the modulation of inflammation and immunity, therapeutic applications and safety of pharmacological ascorbate in disease, and the emerging role of vitamin C as a pleiotropic modulator of critical care illness and cancer.

    Language modelling for clinical natural language understanding and generation

    Get PDF
    One of the long-standing objectives of Artificial Intelligence (AI) is to design and develop algorithms for social good including tackling public health challenges. In the era of digitisation, with an unprecedented amount of healthcare data being captured in digital form, the analysis of the healthcare data at scale can lead to better research of diseases, better monitoring patient conditions and more importantly improving patient outcomes. However, many AI-based analytic algorithms rely solely on structured healthcare data such as bedside measurements and test results which only account for 20% of all healthcare data, whereas the remaining 80% of healthcare data is unstructured including textual data such as clinical notes and discharge summaries which is still underexplored. Conventional Natural Language Processing (NLP) algorithms that are designed for clinical applications rely on the shallow matching, templates and non-contextualised word embeddings which lead to limited understanding of contextual semantics. Though recent advances in NLP algorithms have demonstrated promising performance on a variety of NLP tasks in the general domain with contextualised language models, most of these generic NLP algorithms struggle at specific clinical NLP tasks which require biomedical knowledge and reasoning. Besides, there is limited research to study generative NLP algorithms to generate clinical reports and summaries automatically by considering salient clinical information. This thesis aims to design and develop novel NLP algorithms especially clinical-driven contextualised language models to understand textual healthcare data and generate clinical narratives which can potentially support clinicians, medical scientists and patients. The first contribution of this thesis focuses on capturing phenotypic information of patients from clinical notes which is important to profile patient situation and improve patient outcomes. The thesis proposes a novel self-supervised language model, named Phenotypic Intelligence Extraction (PIE), to annotate phenotypes from clinical notes with the detection of contextual synonyms and the enhancement to reason with numerical values. The second contribution is to demonstrate the utility and benefits of using phenotypic features of patients in clinical use cases by predicting patient outcomes in Intensive Care Units (ICU) and identifying patients at risk of specific diseases with better accuracy and model interpretability. The third contribution is to propose generative models to generate clinical narratives to automate and accelerate the process of report writing and summarisation by clinicians. This thesis first proposes a novel summarisation language model named PEGASUS which surpasses or is on par with the state-of-the-art performance on 12 downstream datasets including biomedical literature from PubMed. PEGASUS is further extended to generate medical scientific documents from input tabular data.Open Acces

    Anthocyanins

    Get PDF
    This book contains 20 articles published in Molecules that concern the color quality of food and wine, anthocyanin biosynthesis and regulation, anthocyanin composition and the biological properties of anthocyanin pigments

    Frida Kahlo (1910–1954). Self-Portrait with Monkey (1938)

    Get PDF

    Développement de tensioactifs à base d’acides biliaires pegylés pour des applications pharmaceutiques

    Full text link
    Les acides biliaires sont reconnus comme des tensioactifs d’origine biologique potentiellement applicables dans le domaine pharmaceutique. Leurs structures en font une plateforme idéale pour l’obtention de nouvelles architectures polymères. Des composés synthétisés par polymérisation anionique de dérivés d’oxirane comme l’oxyde d’éthylène, offre des dérivés amphiphiles pegylés démontrant des propriétés d’agrégation intéressantes en vue d’une amélioration de la biocompatibilité et de la capacité d’encapsulation médicamenteuse. Une large gamme d’acides biliaires pegylés (BA(EGn)x) a été préparée avec comme objectif premier leurs applications dans la formulation de principes actifs problématiques. Pour cela, une caractérisation rigoureuse du comportement de ces dérivés (modulation de la longueur (2 < n < 19) et du nombre de bras (2 < x < 4) de PEG) en solution a été réalisée. Dans le but d’améliorer la biodisponibilité de principes actifs lipophiles (cas de l’itraconazole), des nanoémulsions spontanées, composées de BA(EGn)x et d’acide oléique, ont été développées. L’évaluation in vitro, de la toxicité (cellulaire), et de la capacité de solubilisation des systèmes BA(EGn)x, ainsi que les paramètres pharmacocinétiques in vivo (chez le rat), suggèrent une livraison contrôlée par nos systèmes auto-assemblés lors de l’administration orale et intraveineuse. Aussi, la synthèse de copolymères en blocs en étoile à base d’acide cholique pegylés a été effectuée par polymérisation anionique par addition d’un second bloc au caractère hydrophobe de poly(éther d’allyle et de glycidyle) (CA(EGn-b-AGEm)4). Selon le ratio de blocs hydrophiles-hydrophobes CA(EGn-b-AGEm)4, des réponses thermiques en solution (LCST) ont été observées par un point de trouble (Cp) entre 8 oC et 37 oC. Un mécanisme de formation d’agrégats en plusieurs étapes est suggéré. La thiolation des allyles des PAGE permet une fonctionnalisation terminale à haute densité, comparable aux dendrimères. Les caractérisations physico-chimiques des CA(EGn-b-AGEm-NH2)4 et CA(EGn-b-AGEm-COOH)4 indiquent la formation de structures auto-assemblées en solution, sensibles à la température ou au pH. Cette fonctionnalisation élargie le domaine d’application des dérivés d’acides biliaires pegylés en étoile vers la transfection d’ADN, la livraison de siRNA thérapeutiques ou encore à une sélectivité de livraison médicamenteux (ex. sensibilité au pH, greffage ligands).Bile acids are natural compounds and may have potential for pharmaceutical applications. Their structures provide an interesting platform for polymerization to obtain well-defined architectures. The anionic polymerization of oxirane derivatives, mainly PEG derivatives, endowed new aggregation properties and improvement of biocompatibility of the new amphiphilic polymers based on bile acids. A library of pegylated bile acids (BA(EGn)x) was prepared for the formulation of lipophilic drugs. The aqueous physicochemical behaviors of these derivatives (modulation of the length (2 < n < 19) and the number (2 < x < 4) of PEG arm) were investigated. In order to improve the bioavailability of insoluble active compounds (itraconazole, an antifungal drug), a binary system based on the association of BA(EGn)x and oleic acid, formed self-emulsifying drug delivery systems. The in vitro evaluation of cell toxicity and solubilization capacities of the BA(EGn)x systems followed by the in vivo evaluation in rats of the pharmacokinetic parameters demonstrated the advantages of our self-assembled system for controlled drug delivery for both oral and intravenous administration. Star-shaped block copolymers of pegylated cholic acid (CA(EGn-b-AGEm)4) were prepared by the introduction of a second hydrophobic block of PAGE poly(allyl glycidyl ether). They demonstrated thermosensitivity (8 oC < LCST < 37 oC) in aqueous solution, suggesting a mechanism based on the formation of aggregates in two steps. The PAGE block with pendant groups may facilitate futher functionalization. The thiolation of allyl yields a new class of charged PEGylated star polymers (with multiple amines or carboxylic groups). CA(EGn-b-AGEm-NH2)4 and CA(EGn-b-AGEm-COOH)4 derivatives showed self-assembled structures in solution with temperature and pH responsiveness, respectively. This functionalization may lead to broader application of pegylated star derivatives in DNA transfection systems, siRNA delivery systems or as selective delivery system (pH-dependent)

    Aerococcus Urinae: Establishing the Pathogenesis of an Emerging Uropathogen

    Get PDF
    Urinary tract infection (UTI) is the world\u27s most common bacterial infection. Much is known about the infectious process (pathogenesis) of a few of the bacteria that cause these infections, especially E. coli. Unfortunately, the pathogenesis of E. coli and other uropathogenic bacteria was explored almost exclusively in the belief that the bladder is supposed to be sterile. Our recent evidence, however, debunks this dogma. We used modern methods to reveal diverse bacterial communities in the bladders of adult women. These communities differ in women with and without lower urinary tract symptoms (LUTS), including UTI and urinary incontinence (UI). Many bacteria that we have detected in women with LUTS are understudied precisely because they were previously undetected or overlooked. Thus, very little is known about their pathogenesis. Aerococcus urinae is one of those understudied uropathogenic bacteria. It is associated with both UTI and UI. It is highly resistant to many antibiotics and, when undiagnosed, can cause invasive and life-threatening sepsis. Thus, I have begun a study of A. urinae\u27s pathogenesis. For well-studied uropathogens, the earliest stages of pathogenesis involve attachment to the cells that line the bladder wall (urothelium) and subsequent disruption of the host\u27s bladder immune system. I hypothesized that A. urinae also attaches to the urothelium and alters signaling to the host\u27s bladder immune system. To test my hypothesis, I first studied in vitro phenotypes of A. urinae related to attachment and colonization of the urothelium. Then, I studied the interaction between human urothelium and A. urinae strains isolated from womenwith LUTS. Results from this dissertation could be used to develop therapies that specifically target A. urinae
    • …
    corecore