132,620 research outputs found

    A Network Model for Adaptive Information Retrieval

    Get PDF
    This thesis presents a network model which can be used to represent Associative Information Retrieval applications at a conceptual level. The model presents interesting characteristics of adaptability and it has been used to model both traditional and knowledge based Information Retrieval applications. Moreover, three different processing frameworks which can be used to implement the conceptual model are presented. They provide three different ways of using domain knowledge to adapt the user formulated query to the characteristics of a specific application domain using the domain knowledge stored in a sub-network. The advantages and drawbacks of these three adaptive retrieval strategies are pointed out and discussed. The thesis also reports the results of an experimental investigation into the effectiveness of the adaptive retrieval given by a processing framework based on Neural Networks. This processing framework makes use of the learning and generalisation capabilities of the Backpropagation learning procedure for Neural Networks to build up and use application domain knowledge in the form of a sub-symbolic knowledge representation. The knowledge is acquired from examples of queries and relevant documents of the collection in use. In the tests reported in this thesis the Cranfield document collection has been used. Three different learning strategies are introduced and analysed. Their results in terms of learning and generalisation of the application domain knowledge are studied from an Information Retrieval point of view. Their retrieval results are studied and compared with those obtained by a traditional retrieval approach. The thesis concludes with a critical analysis of the results obtained in the experimental investigation and with a critical view of the operational effectiveness of such an approach

    A Context-Adaptive Ranking Model for Effective Information Retrieval System

    Get PDF
    Abstract When using Information Retrieval (IR) systems, users often present search queries made of ad-hoc keywords. It is then up to information retrieval systems (IRS) to obtain a precise representation of user’s information need, and the context of the information. Context-aware ranking techniques have been constantly used over the past years to improve user interaction in their search activities for improved relevance of retrieved documents. Though, there have been major advances in context-adaptive systems, there is still a lack of technique that models and implements context-adaptive application. The paper addresses this problem using DROPT technique. The DROPT technique ranks individual user information needs according to relevance weights. Our proposed predictive document ranking model is computed as measures of individual user search in their domain of knowledge. The context of a query determines retrieved information relevance. Thus, relevant context aspects should be incorporated in a way that supports the knowledge domain representing users’ interests. We demonstrate the ranking task using metric measures and ANOVA, and argue that it can help an IRS adapted to a user's interaction behaviour, using context to improve the IR effectiveness

    Adaptive Document Retrieval for Deep Question Answering

    Full text link
    State-of-the-art systems in deep question answering proceed as follows: (1) an initial document retrieval selects relevant documents, which (2) are then processed by a neural network in order to extract the final answer. Yet the exact interplay between both components is poorly understood, especially concerning the number of candidate documents that should be retrieved. We show that choosing a static number of documents -- as used in prior research -- suffers from a noise-information trade-off and yields suboptimal results. As a remedy, we propose an adaptive document retrieval model. This learns the optimal candidate number for document retrieval, conditional on the size of the corpus and the query. We report extensive experimental results showing that our adaptive approach outperforms state-of-the-art methods on multiple benchmark datasets, as well as in the context of corpora with variable sizes.Comment: EMNLP 201

    Probabilistic learning for selective dissemination of information

    Get PDF
    New methods and new systems are needed to filter or to selectively distribute the increasing volume of electronic information being produced nowadays. An effective information filtering system is one that provides the exact information that fulfills user's interests with the minimum effort by the user to describe it. Such a system will have to be adaptive to the user changing interest. In this paper we describe and evaluate a learning model for information filtering which is an adaptation of the generalized probabilistic model of information retrieval. The model is based on the concept of 'uncertainty sampling', a technique that allows for relevance feedback both on relevant and nonrelevant documents. The proposed learning model is the core of a prototype information filtering system called ProFile

    Multispectral object segmentation and retrieval in surveillance video

    Get PDF
    This paper describes a system for object segmentation and feature extraction for surveillance video. Segmentation is performed by a dynamic vision system that fuses information from thermal infrared video with standard CCTV video in order to detect and track objects. Separate background modelling in each modality and dynamic mutual information based thresholding are used to provide initial foreground candidates for tracking. The belief in the validity of these candidates is ascertained using knowledge of foreground pixels and temporal linking of candidates. The transferable belief model is used to combine these sources of information and segment objects. Extracted objects are subsequently tracked using adaptive thermo-visual appearance models. In order to facilitate search and classification of objects in large archives, retrieval features from both modalities are extracted for tracked objects. Overall system performance is demonstrated in a simple retrieval scenari

    Using Language Models for Information Retrieval

    Get PDF
    Because of the world wide web, information retrieval systems are now used by millions of untrained users all over the world. The search engines that perform the information retrieval tasks, often retrieve thousands of potentially interesting documents to a query. The documents should be ranked in decreasing order of relevance in order to be useful to the user. This book describes a mathematical model of information retrieval based on the use of statistical language models. The approach uses simple document-based unigram models to compute for each document the probability that it generates the query. This probability is used to rank the documents. The study makes the following research contributions. * The development of a model that integrates term weighting, relevance feedback and structured queries. * The development of a model that supports multiple representations of a request or information need by integrating a statistical translation model. * The development of a model that supports multiple representations of a document, for instance by allowing proximity searches or searches for terms from a particular record field (e.g. a search for terms from the title). * A mathematical interpretation of stop word removal and stemming. * A mathematical interpretation of operators for mandatory terms, wildcards and synonyms. * A practical comparison of a language model-based retrieval system with similar systems that are based on well-established models and term weighting algorithms in a controlled experiment. * The application of the model to cross-language information retrieval and adaptive information filtering, and the evaluation of two prototype systems in a controlled experiment. Experimental results on three standard tasks show that the language model-based algorithms work as well as, or better than, today's top-performing retrieval algorithms. The standard tasks investigated are ad-hoc retrieval (when there are no previously retrieved documents to guide the search), retrospective relevance weighting (find the optimum model for a given set of relevant documents), and ad-hoc retrieval using manually formulated Boolean queries. The application to cross-language retrieval and adaptive filtering shows the practical use of respectively structured queries, and relevance feedback

    Topic-based mixture language modelling

    Get PDF
    This paper describes an approach for constructing a mixture of language models based on simple statistical notions of semantics using probabilistic models developed for information retrieval. The approach encapsulates corpus-derived semantic information and is able to model varying styles of text. Using such information, the corpus texts are clustered in an unsupervised manner and a mixture of topic-specific language models is automatically created. The principal contribution of this work is to characterise the document space resulting from information retrieval techniques and to demonstrate the approach for mixture language modelling. A comparison is made between manual and automatic clustering in order to elucidate how the global content information is expressed in the space. We also compare (in terms of association with manual clustering and language modelling accuracy) alternative term-weighting schemes and the effect of singular value decomposition dimension reduction (latent semantic analysis). Test set perplexity results using the British National Corpus indicate that the approach can improve the potential of statistical language modelling. Using an adaptive procedure, the conventional model may be tuned to track text data with a slight increase in computational cost

    Combining heterogeneous sources in an interactive multimedia content retrieval model

    Get PDF
    Interactive multimodal information retrieval systems (IMIR) increase the capabilities of traditional search systems, by adding the ability to retrieve information of different types (modes) and from different sources. This article describes a formal model for interactive multimodal information retrieval. This model includes formal and widespread definitions of each component of an IMIR system. A use case that focuses on information retrieval regarding sports validates the model, by developing a prototype that implements a subset of the features of the model. Adaptive techniques applied to the retrieval functionality of IMIR systems have been defined by analysing past interactions using decision trees, neural networks, and clustering techniques. This model includes a strategy for selecting sources and combining the results obtained from every source. After modifying the strategy of the prototype for selecting sources, the system is reevaluated using classification techniques.This work was partially supported by eGovernAbility-Access project (TIN2014-52665-C2-2-R)

    Adaptive hypermedia for education and training

    Get PDF
    Adaptive hypermedia (AH) is an alternative to the traditional, one-size-fits-all approach in the development of hypermedia systems. AH systems build a model of the goals, preferences, and knowledge of each individual user; this model is used throughout the interaction with the user to adapt to the needs of that particular user (Brusilovsky, 1996b). For example, a student in an adaptive educational hypermedia system will be given a presentation that is adapted specifically to his or her knowledge of the subject (De Bra & Calvi, 1998; Hothi, Hall, & Sly, 2000) as well as a suggested set of the most relevant links to proceed further (Brusilovsky, Eklund, & Schwarz, 1998; Kavcic, 2004). An adaptive electronic encyclopedia will personalize the content of an article to augment the user's existing knowledge and interests (Bontcheva & Wilks, 2005; Milosavljevic, 1997). A museum guide will adapt the presentation about every visited object to the user's individual path through the museum (Oberlander et al., 1998; Stock et al., 2007). Adaptive hypermedia belongs to the class of user-adaptive systems (Schneider-Hufschmidt, Kühme, & Malinowski, 1993). A distinctive feature of an adaptive system is an explicit user model that represents user knowledge, goals, and interests, as well as other features that enable the system to adapt to different users with their own specific set of goals. An adaptive system collects data for the user model from various sources that can include implicitly observing user interaction and explicitly requesting direct input from the user. The user model is applied to provide an adaptation effect, that is, tailor interaction to different users in the same context. In different kinds of adaptive systems, adaptation effects could vary greatly. In AH systems, it is limited to three major adaptation technologies: adaptive content selection, adaptive navigation support, and adaptive presentation. The first of these three technologies comes from the fields of adaptive information retrieval (IR) and intelligent tutoring systems (ITS). When the user searches for information, the system adaptively selects and prioritizes the most relevant items (Brajnik, Guida, & Tasso, 1987; Brusilovsky, 1992b)
    corecore